Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

📚 CDK: Add python destination tutorial #4800

Merged
merged 24 commits into from
Jul 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
{
"documentationUrl": "https://docs.airbyte.io/integrations/destinations/kvdb",
"supported_destination_sync_modes": ["overwrite", "append", "append_dedupe"],
"supported_destination_sync_modes": ["overwrite", "append"],
"supportsIncremental": true,
"supportsDBT": false,
"supportsNormalization": false,
"connectionSpecification": {
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Destination Kvdb",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -228,9 +228,9 @@ def read_records(
@staticmethod
def clear_urls(record: MutableMapping[str, Any]) -> MutableMapping[str, Any]:
"""Some URLs has random values, these values doesn't affect validity of URLs, but breaks SAT"""
thumbnail_url = record.get('thumbnail_url')
thumbnail_url = record.get("thumbnail_url")
if thumbnail_url:
record['thumbnail_url'] = remove_params_from_url(thumbnail_url, ['_nc_hash', 'd'])
record["thumbnail_url"] = remove_params_from_url(thumbnail_url, ["_nc_hash", "d"])
return record

@backoff_policy
Expand Down
11 changes: 7 additions & 4 deletions docs/contributing-to-airbyte/building-new-connector/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ To build a new connector in Java or Python, we provide templates so you don't ne

## Connector-Development Kit (CDK)

You can build a source connector very quickly with the [Airbyte CDK](../python/README.md), which generates 75% of the code required for you. The CDK does not currently support creating destinations, but it will soon.
You can build a connector very quickly with the [Airbyte CDK](../python/README.md), which generates 75% of the code required for you.


## The Airbyte specification
Expand Down Expand Up @@ -54,14 +54,17 @@ and choose the relevant template. This will generate a new connector in the `air

Search the generated directory for "TODO"s and follow them to implement your connector. For more detailed walkthroughs and instructions, follow the relevant tutorial:

* [Building a Python source connector tutorial](../tutorials/building-a-python-source.md)
* [Building a Java destination connector tutorial](../tutorials/building-a-java-destination.md)
* [Building a Python source ](../tutorials/building-a-python-source.md)
* [Building a Python destination](../tutorials/building-a-python-destination.md)
* [Building a Java destination ](../tutorials/building-a-java-destination.md)

As you implement your connector, make sure to review the [Best Practices for Connector Development](best-practices.md) guide. Following best practices is not a requirement for merging your contribution to Airbyte, but it certainly doesn't hurt ;\)

### 2. Integration tests

At a minimum, your connector must implement the standard tests described in [Testing Connectors](testing-connectors.md)
At a minimum, your connector must implement the acceptance tests described in [Testing Connectors](testing-connectors.md)

**Note: Acceptance tests are not yet available for Python destination connectors. Coming [soon](https://github.com/airbytehq/airbyte/issues/4698)!**

### 3. Document building & testing your connector

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
# Building a Python Destination

## Summary

This article provides a checklist for how to create a Python destination. Each step in the checklist has a link to a more detailed explanation below.

## Requirements

Docker and Python with the versions listed in the [tech stack section](../../understanding-airbyte/tech-stack.md). You can use any Python version between 3.7 and 3.9, but this tutorial was tested with 3.7.

## Checklist

### Creating a destination

* Step 1: Create the destination using the template generator
* Step 2: Setup the virtual environment
* Step 3: Implement `spec` to define the configuration required to run the connector
* Step 4: Implement `check` to provide a way to validate configurations provided to the connector
* Step 5: Implement `write` to write data to the destination
* Step 6: Set up Acceptance Tests
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

since this is not available for Python destinations, should we remove this for now?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is WIP in the next day or two so IMO we should keep it (it also makes it clear this is coming)

* Step 7: Write unit tests or integration tests
* Step 8: Update the docs \(in `docs/integrations/destinations/<destination-name>.md`\)

{% hint style="info" %}
If you need help with any step of the process, feel free to submit a PR with your progress and any questions you have, or ask us on [slack](https://slack.airbyte.io). Also reference the KvDB python destination implementation if you want to see an example of a working destination.
{% endhint %}

## Explaining Each Step

### Step 1: Create the destination using the template

Airbyte provides a code generator which bootstraps the scaffolding for our connector.

```bash
$ cd airbyte-integrations/connector-templates/generator # assumes you are starting from the root of the Airbyte project.
$ ./generate.sh
```

Select the `Python Destination` template and then input the name of your connector. We'll refer to the destination as `destination-<name>` in this tutorial, but you should replace `<name>` with the actual name you used for your connector e.g: `redis` or `google-sheets`.

### Step 2: Setup the dev environment

Setup your Python virtual environment:

```bash
cd airbyte-integrations/connectors/destination-<name>

# Create a virtual environment in the .venv directory
python -m venv .venv

# activate the virtualenv
source .venv/bin/activate
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

don't think this is necessary for this PR but could also include Windows translations of setup bash commands for Win devs at some point

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.


# Install with the "tests" extra which provides test requirements
pip install '.[tests]'
```
This step sets up the initial python environment. **All** subsequent `python` or `pip` commands assume you have activated your virtual environment.

If you want your IDE to auto complete and resolve dependencies properly, point it at the python binary in `airbyte-integrations/connectors/destination-<name>/.venv/bin/python`. Also anytime you change the dependencies in the `setup.py` make sure to re-run the build command. The build system will handle installing all dependencies in the `setup.py` into the virtual environment.

Let's quickly get a few housekeeping items out of the way.

#### Dependencies

Python dependencies for your destination should be declared in `airbyte-integrations/connectors/destination-<name>/setup.py` in the `install_requires` field. You might notice that a couple of Airbyte dependencies are already declared there (mainly the Airbyte CDK and potentially some testing libraries or helpers). Keep those as they will be useful during development.

You may notice that there is a `requirements.txt` in your destination's directory as well. Do not touch this. It is autogenerated and used to install local Airbyte dependencies which are not published to PyPI. All your dependencies should be declared in `setup.py`.

#### Iterating on your implementation

Pretty much all it takes to create a destination is to implement the `Destination` interface. Let's briefly recap the three methods implemented by a Destination:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I mentioned this somewhere else - is there a good reason to keep the requirements.txt? if this is only references local dependencies, can we get rid of it?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The only reason for sources to keep requirements.txt was SAT being a part of mono repo. Since we don't have SAT for destinations yet I don't see any good reason to keep it.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

removed it, but there is non trivial chance it comes back so keeping the section saying "if there is a requirements.txt don't touch it"


1. `spec`: declares the user-provided credentials or configuration needed to run the connector
2. `check`: tests if the user-provided configuration can be used to connect to the underlying data destination, and with the correct write permissions
3. `write`: writes data to the underlying destination by reading a configuration, a stream of records from stdin, and a configured catalog describing the schema of the data and how it should be written to the destination

The destination interface is described in detail in the [Airbyte Specification](../../understanding-airbyte/airbyte-specification.md) reference.

The generated files fill in a lot of information for you and have docstrings describing what you need to do to implement each method. The next few steps are just implementing that interface.

{% hint style="info" %}
All logging should be done through the `self.logger` object available in the `Destination` class. Otherwise, logs will not be shown properly in the Airbyte UI.
{% endhint %}

Everyone develops differently but here are 3 ways that we recommend iterating on a destination. Consider using whichever one matches your style.

**Run the destination using Python**

You'll notice in your destination's directory that there is a python file called `main.py`. This file is the entrypoint for the connector:

```bash
# from airbyte-integrations/connectors/destination-<name>
python main.py spec
python main.py check --config secrets/config.json
# messages.jsonl should contain AirbyteMessages (described in the Airbyte spec)
cat messages.jsonl | python main.py write --config secrets/config.json --catalog sample_files/configured_catalog.json
```

The nice thing about this approach is that you can iterate completely within in python. The downside is that you are not quite running your destination as it will actually be run by Airbyte. Specifically you're not running it from within the docker container that will house it.

**Run using Docker**
If you want to run your destination exactly as it will be run by Airbyte \(i.e. within a docker container\), you can use the following commands from the connector module directory \(`airbyte-integrations/connectors/destination-<name>`\):

```bash
# First build the container
docker build . -t airbyte/destination-<name>:dev

# Then use the following commands to run it
docker run --rm airbyte/destination-<name>:dev spec
docker run --rm -v $(pwd)/secrets:/secrets airbyte/destination-<name>:dev check --config /secrets/config.json
cat messages.jsonl | docker run --rm -v $(pwd)/secrets:/secrets -v $(pwd)/sample_files:/sample_files airbyte/destination-<name>:dev read --config /secrets/config.json --catalog /sample_files/configured_catalog.json
```

Note: Each time you make a change to your implementation you need to re-build the connector image. `docker build . -t airbyte/destination-<name>:dev`. This ensures the new python code is added into the docker container.

The nice thing about this approach is that you are running your source exactly as it will be run by Airbyte. The tradeoff is that iteration is slightly slower, because you need to re-build the connector between each change.

**TDD using standard tests**

_note: these tests aren't yet available for Python connectors but will be very soon. Until then you should use custom unit or integration tests for TDD_.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if this isn't available, should we get rid of this section for now?


Airbyte provides a standard test suite that is run against every destination. The objective of these tests is to provide some "free" tests that can sanity check that the basic functionality of the destination works. One approach to developing your connector is to simply run the tests between each change and use the feedback from them to guide your development.

If you want to try out this approach, check out Step 6 which describes what you need to do to set up the standard tests for your destination.

The nice thing about this approach is that you are running your destination exactly as Airbyte will run it in the CI. The downside is that the tests do not run very quickly.

### Step 3: Implement `spec`

Each destination contains a specification written in JsonSchema that describes the inputs it requires and accepts. Defining the specification is a good place to start development.
To do this, find the spec file generated in `airbyte-integrations/connectors/destination-<name>/src/main/resources/spec.json`. Edit it and you should be done with this step. The generated connector will take care of reading this file and converting it to the correct output.

Some notes about fields in the output spec:
* `supportsNormalization` is a boolean which indicates if this connector supports [basic normalization via DBT](https://docs.airbyte.io/understanding-airbyte/basic-normalization). If true, `supportsDBT` must also be true.
* `supportsDBT` is a boolean which indicates whether this destination is compatible with DBT. If set to true, the user can define custom DBT transformations that run on this destination after each successful sync. This must be true if `supportsNormalization` is set to true.
* `supported_destination_sync_modes`: An array of strings declaring the sync modes supported by this connector. The available options are:
* `overwrite`: The connector can be configured to wipe any existing data in a stream before writing new data
* `append`: The connector can be configured to append new data to existing data
* `append_dedupe`: The connector can be configured to deduplicate (i.e: UPSERT) data in the destination based on the new data and primary keys
* `supportsIncremental`: Whether the connector supports any `append` sync mode. Must be set to true if `append` or `append_dedupe` are included in the `supported_destination_sync_modes`.


Some helpful resources:

* [**JSONSchema website**](https://json-schema.org/)
* [**Definition of Airbyte Protocol data models**](https://github.com/airbytehq/airbyte/blob/master/airbyte-protocol/models/src/main/resources/airbyte_protocol/airbyte_protocol.yaml). The output of `spec` is described by the `ConnectorSpecification` model (which is wrapped in an `AirbyteConnectionStatus` message).
* [**Postgres Destination's spec.json file**](https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/destination-postgres/src/main/resources/spec.json) as an example `spec.json`.

Once you've edited the file, see the `spec` operation in action:

```bash
python main.py spec
```

### Step 4: Implement `check`

The check operation accepts a JSON object conforming to the `spec.json`. In other words if the `spec.json` said that the destination requires a `username` and `password`, the config object might be `{ "username": "airbyte", "password": "password123" }`. It returns a json object that reports, given the credentials in the config, whether we were able to connect to the destination.

While developing, we recommend storing any credentials in `secrets/config.json`. Any `secrets` directory in the Airbyte repo is gitignored by default.

Implement the `check` method in the generated file `destination_<name>/destination.py`. Here's an [example implementation](https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/destination-kvdb/destination_kvdb/destination.py) from the KvDB destination.

Verify that the method is working by placing your config in `secrets/config.json` then running:

```bash
python main.py check --config secrets/config.json
```

### Step 5: Implement `write`
The `write` operation is the main workhorse of a destination connector: it reads input data from the source and writes it to the underlying destination. It takes as input the config file used to run the connector as well as the configured catalog: the file used to describe the schema of the incoming data and how it should be written to the destination. Its "output" is two things:

1. Data written to the underlying destination
2. `AirbyteMessage`s of type `AirbyteStateMessage`, written to stdout to indicate which records have been written so far during a sync. It's important to output these messages when possible in order to avoid re-extracting messages from the source. See the [write operation protocol reference](https://docs.airbyte.io/understanding-airbyte/airbyte-specification#write) for more information.

To implement the `write` Airbyte operation, implement the `write` method in your generated `destination.py` file. [Here is an example implementation](https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/destination-kvdb/destination_kvdb/destination.py) from the KvDB destination connector.

### Step 6: Set up Acceptance Tests

_Coming soon. These tests are not yet available for Python destinations but will be very soon. For now please skip this step and rely on copious
amounts of integration and unit testing_.

### Step 7: Write unit tests and/or integration tests
The Acceptance Tests are meant to cover the basic functionality of a destination. Think of it as the bare minimum required for us to add a destination to Airbyte. You should probably add some unit testing or custom integration testing in case you need to test additional functionality of your destination.

Add unit tests in `unit_tests/` directory and integration tests in the `integration_tests/` directory. Run them via
```bash
python -m pytest -s -vv integration_tests/
```

See the [KvDB integration tests](https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/destination-kvdb/integration_tests/integration_test.py) for an example of tests you can implement.

#### Step 8: Update the docs

Each connector has its own documentation page. By convention, that page should have the following path: in `docs/integrations/destinations/<destination-name>.md`. For the documentation to get packaged with the docs, make sure to add a link to it in `docs/SUMMARY.md`. You can pattern match doing that from existing connectors.

## Wrapping up
Well done on making it this far! If you'd like your connector to ship with Airbyte by default, create a PR against the Airbyte repo and we'll work with you to get it across the finish line.
Original file line number Diff line number Diff line change
Expand Up @@ -106,14 +106,14 @@ Everyone develops differently but here are 3 ways that we recommend iterating on

**Run the source using python**

You'll notice in your source's directory that there is a python file called `main_dev.py`. This file exists as convenience for development. You can call it from within the virtual environment mentioned above `. ./.venv/bin/activate` to test out that your source works.
You'll notice in your source's directory that there is a python file called `main.py`. This file exists as convenience for development. You can call it from within the virtual environment mentioned above `. ./.venv/bin/activate` to test out that your source works.

```text
# from airbyte-integrations/connectors/source-<source-name>
python main_dev.py spec
python main_dev.py check --config secrets/config.json
python main_dev.py discover --config secrets/config.json
python main_dev.py read --config secrets/config.json --catalog sample_files/configured_catalog.json
python main.py spec
python main.py check --config secrets/config.json
python main.py discover --config secrets/config.json
python main.py read --config secrets/config.json --catalog sample_files/configured_catalog.json
```

The nice thing about this approach is that you can iterate completely within in python. The downside is that you are not quite running your source as it will actually be run by Airbyte. Specifically you're not running it from within the docker container that will house it.
Expand Down