Skip to content

Efficient and scalable parallelism using the message passing interface (MPI) to handle big data and highly computational problems.

License

Notifications You must be signed in to change notification settings

alex-medvedev-msc/pypar

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo

PyPar is a python library that provides efficient and scalable parallelism using the message passing interface (MPI) to handle big data and highly computational problems.

Build Status

Example

A simple 'pass the parcel' example.

import pypar as pp

ncpus = pp.size()
rank = pp.rank()
node = pp.get_processor_name()

print 'I am rank %d of %d on node %s' % (rank, ncpus, node)

if rank == 0:
  msh = 'P0'
  pp.send(msg, destination=1)
  msg = pp.receive(source=rank-1)
  print 'Processor 0 received message "%s" from rank %d' % (msg, rank-1)
else:
  source = rank-1
  destination = (rank+1) % ncpus
  msg = pp.receive(source)
  msg = msg + 'P' + str(rank)
  pypar.send(msg, destination)

pp.finalize()

About

Efficient and scalable parallelism using the message passing interface (MPI) to handle big data and highly computational problems.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 77.6%
  • C 22.4%