Skip to content
forked from 3343/edge

Extreme-scale Discontinuous Galerkin Environment (EDGE)

Notifications You must be signed in to change notification settings

alheinecke/edge

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EDGƎ

Equations

  • advection (1D):

    Solves the one-dimensional advection equation. q(x,t) is a scalar. The scalar advection speed a(x) can be set per element, but has to be either positive or negative for the entire domain.

    q_t + a * q_x = 0
    
  • advection (2D):

    Solves the two-dimensional advection equation. q(x,y,t) is a scalar. The scalar advection speeds a(x,y) and b(x,y) can be set per element. Each has to be either positive or negative for the entire domain.

    q_t + a * q_x + b * q_y = 0
    
  • advection (3D):

    Solves the three-dimensional advection equation. q(x,y,z,t) is a scalar. The scalar advection speeds a(x,y,z), b(x,y,z) and c(x,y,z) can be set per element. Each has to be either positive or negative for the entire doman.

    q_t + a * q_x + b * q_y + c q_z = 0
    
  • elastic (2D):

    Solves the two-dimensional elastic wave equations. The vector of quantities q(x,y,t)=(sigma_xx, sigma_yy, sigma_xy, u, v) contains the normal stress components sigma_xx and sigma_yy, the shear stress sigma_xy and the two particle velocities u and v in x- and y-direction respectively. The Jacobians A(x,y) and B(x,y) are allowed to be set per element and summarize the material parameters.

    q_t + A q_x + B q_y = 0
    
  • elastic (3D):

    Solves the three-dimensional elastic wave equations. The vector of quantities q(x,y,z,t)=(sigma_xx, sigma_yy, sigma_zz, sigma_xy, sigma_xz, sigma_yz, u, v, w) contains the normal stress components sigma_xx, sigma_yy and sigma_zz, the shear stresses sigma_xy, sigma_xz and sigma_yz and the three particle velocities u, v w in x-, y- and z-direction respectively. The Jacobians A(x,y,z), B(x,y,z) and C(x,y,z) are allowed to be set per element and summarize the material parameters.

    q_t + A q_x + B q_y + C q_z = 0
    
  • viscoelastic (2D)

    Solves the two-dimensional elastic wave equations with frequency-independent attenuation. The vector of quantities q(x,y,t)=(sigma_xx, sigma_yy, sigma_xy, u, v, m_11, m_12, m_13, ..., m_n1, m_n2, m_n3) contains the elastic quantities and additional memory variables m_11, ..., m_n3. n gives the number of relaxation mechanisms with three quantities per mechanism. The Jacobians A(x,y) and B(x,y) are allowed to be set per element and summarize the material parameters. The matrix E(x,y) is the reactive source term.

    q_t + A  q_x + B q_y = E
    
  • viscoelastic (3D)

    Solves the three-dimensional elastic wave equations with frequency-independent attenuation. The vector of quantities q(x,y,z,t)=(sigma_xx, sigma_yy, sigma_zz, sigma_xy, sigma_xz, sigma_yz, u, v, w, m_11, ..., m_16, ..., m_n1, ..., m_n6) contains the elastic quantities and additional memory variables m_11, ..., m_n6. n gives the number of relaxation mechanisms with six quantities per mechanism. The Jacobians A(x,y,z), B(x,y,z) and C(x,y,z) are allowed to be set per element and summarize the material parameters. The matrix E(x,y,z) is the reactive source term.

    q_t + A  q_x + B q_y + C q_z = E
    
  • swe (1D):

    Solves the one-dimensional Shallow Water Equations (SWE) in conservative form. The conserved quantities q(x,t)=(h,hu) are the water height h and the momentum hu. The flux function is nonlinear. Bathymetry is supported.

    q_t + f(q)_x = 0,
    
           |         hu           |
    f(q) = |                      |
           | hu^2 + 1/2 * g * h^2 |
    
  • swe (2D):

    Solves the two-dimensional Shallow Water Equations (SWE) in conservative form. The conserved quantities q(x,t)=(h,hu,hv) are the water height h, the momentum hu in x-direction and the momentum hv in y-direction. The flux function is nonlinear. Bathymetry is supported.

    q_t + f(q)_x + g(q)_y = 0,
    
           |         hu           |         |          hv          |
           |                      |         |                      |
    f(q) = | hu^2 + 1/2 * g * h^2 |, g(q) = |          huv         |
           |                      |         |                      |
           |         huv          |         | hv^2 + 1/2 * g * h^2 |
    

Elements

  • line (1D):

    Line element. Element width dx is allowed to change in every element.

  • quad4r (2D):

    Rectangular, 4-node quadrilaterals. Widths dx and dy are allowed to change on a per-row/per-column basis (conforming mesh).

  • tria3 (2D):

    3-node triangles. Arbitrary, conforming triangulations of the computational domain are supported.

  • hex8r (3D):

    Rectangular, 8-node hexahedrons (bricks). Widths dx, dy and dz are allowed to change on a conforming mesh basis.

  • tet4 (3D):

    4-node tetrahedrons. Arbitrary, conforming tetrahedralizations are allowed.

Feature table

Based on the equations and the element type, the following table shows the implemented features:

equations element types CFR FV ADER-DG LIBXSMM
advection line, quad4r, tria3, hex8r, tet4 x x x
elastic quad4r, tria3, hex8r, tet4 x x x x
viscoelastic quad4r, tria3, hex8r, tet4 x x x x
swe line, quad4r, tria3 x x

High Performance Support

Microarchitecture Machine(s)
Haswell Comet
Knights Landing Stampede 2, Cori Phase 2, Theta
Knights Mill -
Skylake Amazon Elastic Compute Cloud, Google Cloud Platform, Stampede 2
Cascade Lake Frontera
Ice Lake Oracle Cloud Infrastructure
Rome Oracle Cloud Infrastructure
Milan Oracle Cloud Infrastructure
Neoverse N1 Amazon Elastic Compute Cloud, Oracle Cloud Infrastructure

About

Extreme-scale Discontinuous Galerkin Environment (EDGE)

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 76.3%
  • Python 13.8%
  • POV-Ray SDL 2.8%
  • Mathematica 2.2%
  • Jupyter Notebook 2.0%
  • Shell 1.0%
  • Other 1.9%