Skip to content

Commit

Permalink
separate to own module
Browse files Browse the repository at this point in the history
  • Loading branch information
amogkam committed Apr 25, 2022
1 parent 8783055 commit e2348ba
Show file tree
Hide file tree
Showing 5 changed files with 62 additions and 124 deletions.
3 changes: 2 additions & 1 deletion python/ray/ml/train/data_parallel_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
from ray.train import BackendConfig, TrainingIterator
from ray.train.backend import BackendExecutor
from ray.train.checkpoint import TuneCheckpointManager
from ray.train.utils import construct_train_func, _RayDatasetSpec
from ray.train.utils import construct_train_func
from ray.train.dataset_spec import _RayDatasetSpec
from ray.util.annotations import DeveloperAPI

logger = logging.getLogger(__name__)
Expand Down
58 changes: 48 additions & 10 deletions python/ray/train/backend.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import logging
import os
from collections import defaultdict
from typing import Callable, TypeVar, List, Optional, Dict, Type, Tuple
from typing import Callable, TypeVar, List, Optional, Dict, Union, Type, Tuple

import ray
from ray.exceptions import RayActorError
Expand All @@ -14,7 +14,8 @@
)
from ray.train.session import TrainingResult
from ray.train.session import init_session, get_session, shutdown_session
from ray.train.utils import _RayDatasetSpec, check_for_failure, Singleton
from ray.train.utils import check_for_failure, Singleton
from ray.train.dataset_spec import RayDataset
from ray.train.worker_group import WorkerGroup
from ray.util.annotations import DeveloperAPI
from ray.util.placement_group import get_current_placement_group, remove_placement_group
Expand Down Expand Up @@ -314,22 +315,60 @@ def _create_local_rank_map(self) -> Dict:
ip_dict[node_ip] += 1
return rank_mapping

def _get_dataset_shards(self, dataset_or_dict):

if dataset_or_dict is None:
# Return None for each shard.
return [None] * len(self.worker_group)

def split_dataset(dataset_or_pipeline):
actors = [worker.actor for worker in self.worker_group.workers]
return dataset_or_pipeline.split(
len(self.worker_group), equal=True, locality_hints=actors
)

if isinstance(dataset_or_dict, dict):
# Return a smaller dict for each shard.
dataset_shards = [{} for _ in range(len(self.worker_group))]
# TODO(amog): Update Backend to accept a generic function with logic on
# how to split dataset, instead of having to support _NO-SHARD in key.
for key, dataset in dataset_or_dict.items():
if "_NO-SHARD" in key:
# Do not shard this dataset.
split_datasets = [dataset] * len(self.worker_group)
key = key.replace("_NO-SHARD", "")
else:
split_datasets = split_dataset(dataset)
assert len(split_datasets) == len(self.worker_group)
for i in range(len(split_datasets)):
dataset_shards[i][key] = split_datasets[i]
return dataset_shards
else:
# return a smaller RayDataset for each shard.
return split_dataset(dataset_or_dict)

def start_training(
self,
train_func: Callable[[], T],
dataset_spec: _RayDatasetSpec = None,
dataset: Optional[Union[RayDataset, Dict[str, RayDataset]]] = None,
checkpoint: Optional[Dict] = None,
) -> None:
"""Executes a training function on all workers in a separate thread.
``finish_training`` should be called after this.
Args:
train_func: The training function to run on each worker.
dataset_spec: A specification for the Ray Dataset to be
passed to the training workers, and the logic on how to shard the Ray
Dataset.
checkpoint: The checkpoint data that
train_func (Callable): The training function to run on each worker.
dataset (Optional[Union[Dataset, DatasetPipeline]])
Distributed Ray Dataset or DatasetPipeline to pass into
worker, which can be accessed from the training function via
``train.get_dataset_shard()``. Sharding will automatically be
handled by the Trainer. Multiple Datasets can be passed in as
a ``Dict`` that maps each name key to a Dataset value,
and each Dataset can be accessed from the training function
by passing in a `dataset_name` argument to
``train.get_dataset_shard()``.
checkpoint (Optional[Dict]): The checkpoint data that
should be loaded onto each worker and accessed by the
training function via ``train.load_checkpoint()``. If this
is ``None`` then no checkpoint will be loaded.
Expand Down Expand Up @@ -368,8 +407,7 @@ def initialize_session(
)

if self.dataset_shards is None:
actors = [worker.actor for worker in self.worker_group.workers]
self.dataset_shards = dataset_spec.get_dataset_shards(actors)
self.dataset_shards = self._get_dataset_shards(dataset)

local_rank_map = self._create_local_rank_map()

Expand Down
3 changes: 2 additions & 1 deletion python/ray/train/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@
RESULT_FETCH_TIMEOUT,
SESSION_MISUSE_LOG_ONCE_KEY,
)
from ray.train.utils import PropagatingThread, RayDataset
from ray.train.utils import PropagatingThread
from ray.train.dataset_spec import RayDataset
from ray.util import PublicAPI, log_once


Expand Down
30 changes: 10 additions & 20 deletions python/ray/train/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,12 +15,8 @@
)
from ray.train.callbacks.callback import TrainingCallback
from ray.train.session import TrainingResultType
from ray.train.utils import (
RayDataset,
construct_train_func,
ActorWrapper,
_RayDatasetSpec,
)
from ray.train.utils import construct_train_func, ActorWrapper
from ray.train.dataset_spec import RayDataset
from ray.train.checkpoint import (
CheckpointStrategy,
TuneCheckpointManager,
Expand Down Expand Up @@ -325,14 +321,12 @@ def run(

train_func = construct_train_func(train_func, config)

dataset_spec = _RayDatasetSpec(dataset_or_dict=dataset)

try:
iterator = TrainingIterator(
backend_executor=self._backend_executor,
backend_config=self._backend_config,
train_func=train_func,
dataset_spec=dataset_spec,
dataset=dataset,
checkpoint_manager=self.checkpoint_manager,
checkpoint=checkpoint,
checkpoint_strategy=checkpoint_strategy,
Expand Down Expand Up @@ -404,14 +398,12 @@ def train_func(config):

train_func = construct_train_func(train_func, config)

dataset_spec = _RayDatasetSpec(dataset_or_dict=dataset)

return TrainingIterator(
backend_executor=self._backend_executor,
backend_config=self._backend_config,
train_func=train_func,
run_dir=self.latest_run_dir,
dataset_spec=dataset_spec,
dataset=dataset,
checkpoint_manager=self.checkpoint_manager,
checkpoint=checkpoint,
checkpoint_strategy=checkpoint_strategy,
Expand Down Expand Up @@ -643,7 +635,7 @@ def __init__(
backend_executor: Union[BackendExecutor, ActorWrapper],
backend_config: BackendConfig,
train_func: Union[Callable[[], T], Callable[[Dict[str, Any]], T]],
dataset_spec: _RayDatasetSpec,
dataset: Optional[Union[RayDataset, Dict[str, RayDataset]]],
checkpoint_manager: CheckpointManager,
checkpoint: Optional[Union[Dict, str, Path]],
checkpoint_strategy: Optional[CheckpointStrategy],
Expand All @@ -652,14 +644,14 @@ def __init__(
self._backend_executor = backend_executor
self._backend = backend_config.backend_cls()
self._train_func = train_func
self._dataset_spec = dataset_spec
self._dataset = dataset
self._run_dir = run_dir
self._checkpoint_manager = checkpoint_manager
self._checkpoint_strategy = checkpoint_strategy
self._start_training(
train_func=train_func,
run_dir=run_dir,
dataset_spec=self._dataset_spec,
dataset=dataset,
checkpoint=checkpoint,
checkpoint_strategy=checkpoint_strategy,
)
Expand All @@ -674,7 +666,7 @@ def _start_training(
self,
train_func,
run_dir,
dataset_spec,
dataset,
checkpoint,
checkpoint_strategy,
latest_checkpoint_id=None,
Expand All @@ -687,9 +679,7 @@ def _start_training(
checkpoint_dict = self._checkpoint_manager._load_checkpoint(checkpoint)
self._run_with_error_handling(
lambda: self._backend_executor.start_training(
train_func=train_func,
dataset_config=dataset_spec,
checkpoint=checkpoint_dict,
train_func=train_func, dataset=dataset, checkpoint=checkpoint_dict
)
)

Expand All @@ -708,7 +698,7 @@ def _run_with_error_handling(self, func: Callable):
self._start_training(
self._train_func,
self._run_dir,
self._dataset_spec,
self._dataset,
self._checkpoint_manager.latest_checkpoint,
self._checkpoint_strategy,
latest_checkpoint_id=self._checkpoint_manager.latest_checkpoint_id,
Expand Down
92 changes: 0 additions & 92 deletions python/ray/train/utils.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import abc
from dataclasses import dataclass
import inspect
import os
import logging
Expand All @@ -11,7 +10,6 @@
Dict,
List,
Any,
TYPE_CHECKING,
Union,
Callable,
TypeVar,
Expand All @@ -24,11 +22,6 @@
from ray.types import ObjectRef
from ray.util.ml_utils.util import find_free_port

if TYPE_CHECKING:
from ray.data import Dataset
from ray.data.dataset_pipeline import DatasetPipeline

RayDataset = Union["Dataset", "DatasetPipeline"]
T = TypeVar("T")

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -173,88 +166,3 @@ def __getattr__(self, item):
# actor.
actor_method = getattr(self.actor, item)
return lambda *args, **kwargs: ray.get(actor_method.remote(*args, **kwargs))


@dataclass
class _RayDatasetSpec:
"""Configuration for Ray Datasets to pass to the training workers.
dataset_or_dict: An optional Ray Dataset (or DatasetPipeline) or a dictionary of
datasets to be sharded across all the training workers, which can be accessed
from the training function via ``train.get_dataset_shard()``. Multiple Datasets
can be passed in as a ``Dict`` that maps each name key to a Dataset value,
and each Dataset can be accessed from the training function by passing in a
`dataset_name` argument to ``train.get_dataset_shard()``.
dataset_split_fn: An optional callable to specify how the provided ``dataset``
should be split across the training workers. It is expected to take in two
arguments. The first one is the ``dataset``, just as is passed in to the
``_RayDatasetSpec``. The second argument is a list of the ActorHandles of the
training workers (to use as locality hints). The Callable is expected to
return a list of RayDatasets or a list of dictionaries of RayDatasets,
with the length of the list equal to the length of the list of actor handles.
If None is provided, the provided Ray Dataset(s) will be simply be split using
the actor handles as locality hints.
"""

dataset_or_dict: Optional[Union[RayDataset, Dict[str, RayDataset]]]
dataset_split_fn: Optional[
Callable[
[Union[RayDataset, Dict[str, RayDataset]], List[ActorHandle]],
List[Union[RayDataset, Dict[str, RayDataset]]],
]
] = None

def _default_split_fn(
self, training_worker_handles: List[ActorHandle]
) -> List[Optional[Union[RayDataset, Dict[str, RayDataset]]]]:
def split_dataset(dataset_or_pipeline):
return dataset_or_pipeline.split(
len(training_worker_handles),
equal=True,
locality_hints=training_worker_handles,
)

if isinstance(self.dataset_or_dict, dict):
# Return a smaller dict for each shard.
dataset_shards = [{} for _ in range(len(self.worker_group))]
for key, dataset in self.dataset_or_dict.items():
split_datasets = split_dataset(dataset)
assert len(split_datasets) == len(self.worker_group)
for i in range(len(split_datasets)):
dataset_shards[i][key] = split_datasets[i]
return dataset_shards
else:
# return a smaller RayDataset for each shard.
return split_dataset(self.dataset_or_dict)

def get_dataset_shards(
self, training_worker_handles: List[ActorHandle]
) -> List[Optional[Union[RayDataset, Dict[str, RayDataset]]]]:
"""Returns Dataset splits based off the spec and the given training workers
Args:
training_worker_handles: A list of the training worker actor handles.
Returns:
A list of RayDataset shards or list of dictionaries of RayDataset shards,
one for each training worker.
"""
if self.dataset_or_dict is None:
# If no Dataset is provided, return None for each shard.
return [None] * len(training_worker_handles)

if self.dataset_split_fn is None:
return self._default_split_fn(training_worker_handles)
else:
splits = self.dataset_split_fn(
self.dataset_or_dict, training_worker_handles
)
if not len(splits) == len(training_worker_handles):
raise RuntimeError(
"The list of Datasets returned by the "
f"`dataset_split_fn`: {len(splits)} does not match "
f"the number of training workers: {len(training_worker_handles)}"
)
return splits

0 comments on commit e2348ba

Please sign in to comment.