Skip to content

ankitvgupta/densenet_1d

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

densenet_1d

This repository contains a Keras implementation of the DenseNet paper (Huang et al, "Densely Connected Convolutional Networks", CVPR 2017). This implementation will focus on use-cases where the inputs are 1D sequences.

Setup

To install densenet, simply clone this repository, and run

python setup.py install

Usage

The classifiers directory contains classifiers implemented as subclasses of keras.models.Model classes. This means that once a densenet.classifier is instantiated, it contains all of the usual methods of keras.models.Model, such as fit, predict, evaluate, summary, etc.

Here is an instantiation of the model that matches the original Huang et al. paper, except using a one-dimensional input rather than a two-dimensional input:

from densenet.classifiers.one_d import DenseNet121
model = DenseNet121(input_shape=(224, 13))
print(model.summary())

Upon running those lines, you should see an extensive summary indicating the layers in the model.

Note that the DenseNet implementations are highly customizable. For example, say you want to replace the default width-3 convolutions with width-5 ones. Simply instantiate your model as

from densenet.classifiers.one_d import DenseNet121
model = DenseNet121(input_shape=(224, 13), conv_kernel_width=5)
print(model.summary())

References

About

An implementation of DenseNet for 1D inputs in Keras

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages