Skip to content

Join ordering optimization using Deep Reinforcement Learning

Notifications You must be signed in to change notification settings

antonismand/ReJOIN

Repository files navigation

ReJOIN

An implementation of ReJOIN: a learned join ordering optimizer, as described in the following papers:

Some experiments

Some Running examples

  • Train target group 4 for 200 episodes sudo python3 main.py -e 200 -g 1 -tg 4 -se 100 -s ./saved_model/group4-200/

Now the plots are in ./outputs folder (default) and the model in ./saved_model/

  • Restore saved model and test group 4 sudo python3 main.py -e 3 -g 1 -tg 4 -r ./saved_model/group4-200/ --testing -o ./outputs/testing/

  • Restore saved model and keep training on group 5 for 500 episodes sudo python3 main.py -e 200 -g 1 -tg 5 -se 100 -r ./saved_model/group4-200/ -s ./saved_model/group5-500/

  • Execute a single query python main.py --query 3a --episodes 150

Program parameters

  • Agent configuration file
    "-a", "--agent-config"
    default="config/ppo.json"

  • Network specification file
    "-n", "--network-spec"
    default="config/complex-network.json"

  • Number of episodes
    "-e", "--episodes"
    default=800

  • Total groups of different number of relations
    "-g", "--groups"
    default=1

  • Run specific group
    "-tg", "--target_group"
    default=5

  • Incremental Mode
    "-m", "--mode"
    default="round"

  • Maximum number of timesteps per episode
    "-ti", "--max-timesteps"
    default=20

  • Run specific query
    "-q", "--query"
    default=""

  • Save agent to this dir
    "-s", "--save_agent"

  • Restore Agent from this dir
    "-r", "--restore_agent"

  • Test agent without learning (use deterministic) "-t", "--testing"
    action="store_true"
    default=False

  • Order queries by relations_num
    "-all", "--run_all"
    default=False

  • Save agent every x episodes
    "-se", "--save-episodes"
    default=100

  • Select phase (1 or 2)
    "-p", "--phase"
    default=1

About

Join ordering optimization using Deep Reinforcement Learning

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published