Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-18633][ML][Example]: Add multiclass logistic regression summary python example and document #16064

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions docs/ml-classification-regression.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,9 +114,15 @@ Continuing the earlier example:
{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java %}
</div>

<!--- TODO: Add python model summaries once implemented -->
<div data-lang="python" markdown="1">
Logistic regression model summary is not yet supported in Python.
[`LogisticRegressionTrainingSummary`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionSummary)
provides a summary for a
[`LogisticRegressionModel`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionModel).
Currently, only binary classification is supported. Support for multiclass model summaries will be added in the future.

Continuing the earlier example:

{% include_example python/ml/logistic_regression_summary_example.py %}
</div>

</div>
Expand Down
68 changes: 68 additions & 0 deletions examples/src/main/python/ml/logistic_regression_summary_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from __future__ import print_function

# $example on$
from pyspark.ml.classification import LogisticRegression
# $example off$
from pyspark.sql import SparkSession

"""
An example demonstrating Logistic Regression Summary.
Run with:
bin/spark-submit examples/src/main/python/ml/logistic_regression_summary_example.py
"""

if __name__ == "__main__":
spark = SparkSession \
.builder \
.appName("LogisticRegressionSummary") \
.getOrCreate()

# Load training data
training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

# Fit the model
lrModel = lr.fit(training)

# $example on$
# Extract the summary from the returned LogisticRegressionModel instance trained
# in the earlier example
trainingSummary = lrModel.summary

# Obtain the objective per iteration
objectiveHistory = trainingSummary.objectiveHistory
print("objectiveHistory:")
for objective in objectiveHistory:
print(objective)

# Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
trainingSummary.roc.show()
print("areaUnderROC: " + str(trainingSummary.areaUnderROC))

# Set the model threshold to maximize F-Measure
fMeasure = trainingSummary.fMeasureByThreshold
maxFMeasure = fMeasure.groupBy().max('F-Measure').select('max(F-Measure)').head()
bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure['max(F-Measure)']) \
.select('threshold').head()['threshold']
lr.setThreshold(bestThreshold)
# $example off$

spark.stop()