Skip to content

Commit

Permalink
[druid] Allow custom druid postaggregators (#3146)
Browse files Browse the repository at this point in the history
* [druid] Allow custom druid postaggregators

Also, fix the postaggregation for approxHistogram quantiles so it adds
the dependent field and that can show up in the graphs/tables.

In general, postAggregators add significant power, we should probably
support including custom postAggregators. Plywood has standard
postAggregators here, and a customAggregator escape hatch that allows
you to define custom postAggregators.

This commit adds a similar capability for Superset and a additional
field/fields/fieldName breakdown of the typical naming for dependent
aggregations, which should make it significantly easier to develop
approxHistogram and custom postAggregation-required dashboards.

* [druid] Minor style cleanup in tests file.

* [druid] Apply code review suggestions

* break out CustomPostAggregator into separate class. This just cleans
  up the creation of the postaggregator a little bit.
* minor style issues.
* move the function around so the git diff is more readable
  • Loading branch information
brianwolfe authored and mistercrunch committed Jul 28, 2017
1 parent ad5a438 commit 1e325d9
Show file tree
Hide file tree
Showing 2 changed files with 151 additions and 55 deletions.
129 changes: 77 additions & 52 deletions superset/connectors/druid/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,13 @@ def __init__(self, name, field_names, function):
self.name = name


class CustomPostAggregator(Postaggregator):
"""A way to allow users to specify completely custom PostAggregators"""
def __init__(self, name, post_aggregator):
self.name = name
self.post_aggregator = post_aggregator


class DruidCluster(Model, AuditMixinNullable):

"""ORM object referencing the Druid clusters"""
Expand Down Expand Up @@ -690,6 +697,75 @@ def granularity(period_name, timezone=None, origin=None):
period_name).total_seconds() * 1000
return granularity

@staticmethod
def _metrics_and_post_aggs(metrics, metrics_dict):
all_metrics = []
post_aggs = {}

def recursive_get_fields(_conf):
_type = _conf.get('type')
_field = _conf.get('field')
_fields = _conf.get('fields')

field_names = []
if _type in ['fieldAccess', 'hyperUniqueCardinality',
'quantile', 'quantiles']:
field_names.append(_conf.get('fieldName', ''))

if _field:
field_names += recursive_get_fields(_field)

if _fields:
for _f in _fields:
field_names += recursive_get_fields(_f)

return list(set(field_names))

for metric_name in metrics:
metric = metrics_dict[metric_name]
if metric.metric_type != 'postagg':
all_metrics.append(metric_name)
else:
mconf = metric.json_obj
all_metrics += recursive_get_fields(mconf)
all_metrics += mconf.get('fieldNames', [])
if mconf.get('type') == 'javascript':
post_aggs[metric_name] = JavascriptPostAggregator(
name=mconf.get('name', ''),
field_names=mconf.get('fieldNames', []),
function=mconf.get('function', ''))
elif mconf.get('type') == 'quantile':
post_aggs[metric_name] = Quantile(
mconf.get('name', ''),
mconf.get('probability', ''),
)
elif mconf.get('type') == 'quantiles':
post_aggs[metric_name] = Quantiles(
mconf.get('name', ''),
mconf.get('probabilities', ''),
)
elif mconf.get('type') == 'fieldAccess':
post_aggs[metric_name] = Field(mconf.get('name'))
elif mconf.get('type') == 'constant':
post_aggs[metric_name] = Const(
mconf.get('value'),
output_name=mconf.get('name', '')
)
elif mconf.get('type') == 'hyperUniqueCardinality':
post_aggs[metric_name] = HyperUniqueCardinality(
mconf.get('name')
)
elif mconf.get('type') == 'arithmetic':
post_aggs[metric_name] = Postaggregator(
mconf.get('fn', "/"),
mconf.get('fields', []),
mconf.get('name', ''))
else:
post_aggs[metric_name] = CustomPostAggregator(
mconf.get('name', ''),
mconf)
return all_metrics, post_aggs

def values_for_column(self,
column_name,
limit=10000):
Expand Down Expand Up @@ -749,61 +825,10 @@ def run_query( # noqa / druid

query_str = ""
metrics_dict = {m.metric_name: m for m in self.metrics}
all_metrics = []
post_aggs = {}

columns_dict = {c.column_name: c for c in self.columns}

def recursive_get_fields(_conf):
_fields = _conf.get('fields', [])
field_names = []
for _f in _fields:
_type = _f.get('type')
if _type in ['fieldAccess', 'hyperUniqueCardinality']:
field_names.append(_f.get('fieldName'))
elif _type == 'arithmetic':
field_names += recursive_get_fields(_f)
return list(set(field_names))

for metric_name in metrics:
metric = metrics_dict[metric_name]
if metric.metric_type != 'postagg':
all_metrics.append(metric_name)
else:
mconf = metric.json_obj
all_metrics += recursive_get_fields(mconf)
all_metrics += mconf.get('fieldNames', [])
if mconf.get('type') == 'javascript':
post_aggs[metric_name] = JavascriptPostAggregator(
name=mconf.get('name', ''),
field_names=mconf.get('fieldNames', []),
function=mconf.get('function', ''))
elif mconf.get('type') == 'quantile':
post_aggs[metric_name] = Quantile(
mconf.get('name', ''),
mconf.get('probability', ''),
)
elif mconf.get('type') == 'quantiles':
post_aggs[metric_name] = Quantiles(
mconf.get('name', ''),
mconf.get('probabilities', ''),
)
elif mconf.get('type') == 'fieldAccess':
post_aggs[metric_name] = Field(mconf.get('name'))
elif mconf.get('type') == 'constant':
post_aggs[metric_name] = Const(
mconf.get('value'),
output_name=mconf.get('name', '')
)
elif mconf.get('type') == 'hyperUniqueCardinality':
post_aggs[metric_name] = HyperUniqueCardinality(
mconf.get('name')
)
else:
post_aggs[metric_name] = Postaggregator(
mconf.get('fn', "/"),
mconf.get('fields', []),
mconf.get('name', ''))
all_metrics, post_aggs = self._metrics_and_post_aggs(metrics, metrics_dict)

aggregations = OrderedDict()
for m in self.metrics:
Expand Down
77 changes: 74 additions & 3 deletions tests/druid_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@
from mock import Mock, patch

from superset import db, sm, security
from superset.connectors.druid.models import DruidCluster, DruidDatasource
from superset.connectors.druid.models import PyDruid
from superset.connectors.druid.models import DruidMetric, DruidCluster, DruidDatasource
from superset.connectors.druid.models import PyDruid, Quantile, Postaggregator

from .base_tests import SupersetTestCase

Expand All @@ -38,7 +38,7 @@
"metric1": {
"type": "longSum",
"name": "metric1",
"fieldName": "metric1"}
"fieldName": "metric1"},
},
"size": 300000,
"numRows": 5000000
Expand Down Expand Up @@ -318,6 +318,77 @@ def test_sync_druid_perm(self, PyDruid):
permission=permission, view_menu=view_menu).first()
assert pv is not None

def test_metrics_and_post_aggs(self):
"""
Test generation of metrics and post-aggregations from an initial list
of superset metrics (which may include the results of either). This
primarily tests that specifying a post-aggregator metric will also
require the raw aggregation of the associated druid metric column.
"""
metrics_dict = {
'unused_count': DruidMetric(
metric_name='unused_count',
verbose_name='COUNT(*)',
metric_type='count',
json=json.dumps({'type': 'count', 'name': 'unused_count'})),
'some_sum': DruidMetric(
metric_name='some_sum',
verbose_name='SUM(*)',
metric_type='sum',
json=json.dumps({'type': 'sum', 'name': 'sum'})),
'a_histogram': DruidMetric(
metric_name='a_histogram',
verbose_name='APPROXIMATE_HISTOGRAM(*)',
metric_type='approxHistogramFold',
json=json.dumps({'type': 'approxHistogramFold', 'name': 'a_histogram'})),
'aCustomMetric': DruidMetric(
metric_name='aCustomMetric',
verbose_name='MY_AWESOME_METRIC(*)',
metric_type='aCustomType',
json=json.dumps({'type': 'customMetric', 'name': 'aCustomMetric'})),
'quantile_p95': DruidMetric(
metric_name='quantile_p95',
verbose_name='P95(*)',
metric_type='postagg',
json=json.dumps({
'type': 'quantile',
'probability': 0.95,
'name': 'p95',
'fieldName': 'a_histogram'})),
'aCustomPostAgg': DruidMetric(
metric_name='aCustomPostAgg',
verbose_name='CUSTOM_POST_AGG(*)',
metric_type='postagg',
json=json.dumps({
'type': 'customPostAgg',
'name': 'aCustomPostAgg',
'field': {
'type': 'fieldAccess',
'fieldName': 'aCustomMetric'}})),
}

metrics = ['some_sum']
all_metrics, post_aggs = DruidDatasource._metrics_and_post_aggs(
metrics, metrics_dict)

assert all_metrics == ['some_sum']
assert post_aggs == {}

metrics = ['quantile_p95']
all_metrics, post_aggs = DruidDatasource._metrics_and_post_aggs(
metrics, metrics_dict)

result_postaggs = set(['quantile_p95'])
assert all_metrics == ['a_histogram']
assert set(post_aggs.keys()) == result_postaggs

metrics = ['aCustomPostAgg']
all_metrics, post_aggs = DruidDatasource._metrics_and_post_aggs(
metrics, metrics_dict)

result_postaggs = set(['aCustomPostAgg'])
assert all_metrics == ['aCustomMetric']
assert set(post_aggs.keys()) == result_postaggs


if __name__ == '__main__':
Expand Down

0 comments on commit 1e325d9

Please sign in to comment.