Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend][ONNX] Support auto_pad in Conv and ConvTranspose #4563

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 65 additions & 8 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,17 @@ def revert_caffe2_pad(pads):
return pads


def get_pad_pair(input1d, kernel1d, stride1d):
"""infer pad size"""
if input1d % stride1d == 0:
pad = max(kernel1d - stride1d, 0)
else:
pad = max(kernel1d - (input1d % stride1d), 0)
pad_before = pad // 2
pad_after = pad - pad_before
return [pad_before, pad_after]


def onnx_storage_order2layout(storage_order):
"""converter of onnx storage order parameter to tvm storage order format"""
if storage_order not in (0, 1):
Expand Down Expand Up @@ -202,14 +213,37 @@ class Conv(OnnxOpConverter):

@classmethod
def _impl_v1(cls, inputs, attr, params):
out = AttrCvt(op_name=dimension_picker('conv'),
transforms={
'kernel_shape': 'kernel_size',
'dilations': ('dilation', (0, 0)),
'pads': ('padding', (0, 0), revert_caffe2_pad),
'group': ('groups', 1)},
ignores=['auto_pad'],
custom_check=dimension_constraint())(inputs[:2], attr, params)
# infer pads for auto_pad
if 'auto_pad' in attr:
attr['auto_pad'] = attr['auto_pad'].decode('utf-8')
if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'):
input_shape = infer_shape(inputs[0])
in_h, in_w = input_shape[2], input_shape[3]
stride_h, stride_w = attr['strides']
kernel_h, kernel_w = attr['kernel_shape']
dilation_h, dilation_w = attr['dilations']
dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
pad_v = get_pad_pair(in_h, dilated_kernel_h, stride_h)
pad_h = get_pad_pair(in_w, dilated_kernel_w, stride_w)
attr['pads'] = (pad_v[0], pad_h[0], pad_v[1], pad_h[1])
elif attr['auto_pad'] == 'VALID':
attr['pads'] = (0, 0)
elif attr['auto_pad'] == 'NOTSET':
pass
else:
msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad']))
attr.pop('auto_pad')

out = AttrCvt(
op_name=dimension_picker('conv'),
transforms={
'kernel_shape': 'kernel_size',
'dilations': ('dilation', (0, 0)),
'pads': ('padding', (0, 0), revert_caffe2_pad),
'group': ('groups', 1)},
custom_check=dimension_constraint())(inputs[:2], attr, params)
use_bias = len(inputs) == 3
if use_bias:
out = _op.nn.bias_add(out, inputs[2])
Expand All @@ -226,6 +260,29 @@ def _impl_v1(cls, inputs, attr, params):
attr['channels'] = channels
groups = attr.pop('group')
attr['groups'] = groups
# infer pads for auto_pad
if 'auto_pad' in attr:
attr['auto_pad'] = attr['auto_pad'].decode('utf-8')
if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'):
input_shape = infer_shape(inputs[0])
in_h, in_w = input_shape[2], input_shape[3]
stride_h, stride_w = attr['strides']
kernel_h, kernel_w = attr['kernel_shape']
dilation_h, dilation_w = attr['dilations']
dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
pad_v = get_pad_pair(in_h, dilated_kernel_h, stride_h)
pad_h = get_pad_pair(in_w, dilated_kernel_w, stride_w)
attr['pads'] = (pad_v[0], pad_h[0], pad_v[1], pad_h[1])
elif attr['auto_pad'] == 'VALID':
attr['pads'] = (0, 0)
elif attr['auto_pad'] == 'NOTSET':
pass
else:
msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad']))
attr.pop('auto_pad')

out = AttrCvt(
op_name=dimension_picker('conv', '_transpose'),
transforms={
Expand Down
88 changes: 85 additions & 3 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,11 +77,14 @@ def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output
return tvm_output.asnumpy()


def get_onnxruntime_output(model, x, dtype='float32'):
def get_onnxruntime_output(model, inputs, dtype='float32'):
import onnxruntime.backend
rep = onnxruntime.backend.prepare(model, 'CPU')
x = x.astype(dtype)
ort_out = rep.run(x)[0]
if isinstance(inputs, list) and len(inputs) > 1:
ort_out = rep.run(inputs)
else:
x = inputs.astype(dtype)
ort_out = rep.run(x)[0]
return ort_out


Expand Down Expand Up @@ -1746,6 +1749,83 @@ def test_or():
verify_or(indata=[x, y], dtype=bool)


def verify_conv(x_shape, w_shape, y_shape, p):
node = helper.make_node('Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
# Default values for other attributes:
# strides=[1, 1],
# dilations=[1, 1],
# groups=1
pads=p,)

graph = helper.make_graph([node],
'conv_test',
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))])

model = helper.make_model(graph, producer_name='conv_test')

for target, ctx in ctx_list():
x = np.random.uniform(size=x_shape).astype('float32')
W = np.random.uniform(size=w_shape).astype('float32')
tvm_out = get_tvm_output(model, [x, W], target, ctx, y_shape)
onnx_out = get_onnxruntime_output(model, [x, W], 'float32')[0]
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)


def test_conv():
# Convolution with padding
# (1, 1, 5, 5) input tensor
# (1, 1, 3, 3) tensor for convolution weights
# (1, 1, 5, 5) output tensor
# [1, 1, 1, 1] list for pads
verify_conv((1, 1, 5, 5), (1, 1, 3, 3), (1, 1, 5, 5), [1, 1, 1, 1])

# Convolution without padding
# (1, 1, 5, 5) input tensor
# (1, 1, 3, 3) tensor for convolution weights
# (1, 1, 3, 3) output tensor
# [0, 0, 0, 0] list for pads
verify_conv((1, 1, 5, 5), (1, 1, 3, 3), (1, 1, 3, 3), [0, 0, 0, 0])


def verify_convtranspose(x_shape, w_shape, y_shape, p):
node = onnx.helper.make_node("ConvTranspose",
inputs=["x", "W"],
outputs=['y'],
strides=[3, 2],
group=1,
kernel_shape=[3, 3],
pads=p)

graph = helper.make_graph([node],
'verify_convtranspose_test',
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))])

model = helper.make_model(graph, producer_name='convtranspose_trest')

for target, ctx in ctx_list():
x = np.random.uniform(size=x_shape).astype('float32')
W = np.random.uniform(size=w_shape).astype('float32')
tvm_out = get_tvm_output(model, [x, W], target, ctx, y_shape)
onnx_out = get_onnxruntime_output(model, [x, W], 'float32')[0]
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)


def test_convtranspose():
# Convolution Transpose with padding
# (1, 1, 3, 3) input tensor
# (1, 2, 3, 3) tensor for convolution weights
# (1, 2, 7, 3) output tensor
# [1, 2, 1, 2] list for pads
verify_convtranspose((1, 1, 3, 3), (1, 2, 3, 3), (1, 2, 7, 3), [1, 2, 1, 2])


if __name__ == '__main__':
test_flatten()
test_reshape()
Expand Down Expand Up @@ -1800,3 +1880,5 @@ def test_or():
test_or()
test_depth_to_space()
test_space_to_depth()
test_conv()
test_convtranspose()