Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove developer facing api from frontend exports. #5375

Merged
merged 1 commit into from
Apr 19, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions python/tvm/relay/frontend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,6 @@
from __future__ import absolute_import

from .mxnet import from_mxnet
from .mxnet_qnn_op_utils import dequantize_mxnet_min_max
from .mxnet_qnn_op_utils import quantize_mxnet_min_max
from .mxnet_qnn_op_utils import get_mkldnn_int8_scale
from .mxnet_qnn_op_utils import get_mkldnn_uint8_scale
from .mxnet_qnn_op_utils import quantize_conv_bias_mkldnn_from_var
from .keras import from_keras
from .onnx import from_onnx
Expand Down
37 changes: 19 additions & 18 deletions tests/python/frontend/mxnet/test_qnn_ops_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,14 @@
# under the License.

import tvm
from tvm import te
import numpy as np
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.frontend.mxnet_qnn_op_utils import dequantize_mxnet_min_max, \
quantize_mxnet_min_max, \
get_mkldnn_int8_scale, \
get_mkldnn_uint8_scale, \
quantize_conv_bias_mkldnn_from_var


def test_mkldnn_dequantize():
Expand All @@ -29,11 +33,10 @@ def dequantize_test_driver(in_dtype, quant_args, in_data, verify_output_data):
input_data = relay.var("input_data", shape=shape, dtype=in_dtype)
min_range = quant_args['min_range']
max_range = quant_args['max_range']
dequantized_output = \
relay.frontend.dequantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
in_dtype=in_dtype)
dequantized_output = dequantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
in_dtype=in_dtype)
mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output)
mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3):
Expand Down Expand Up @@ -79,17 +82,15 @@ def test_int8_to_float32():


def test_mkldnn_quantize():

def quantize_test_driver(out_dtype, quant_args, in_data, verify_output_data):
shape = in_data.shape
input_data = relay.var("input_data", shape=shape, dtype='float32')
min_range = quant_args['min_range']
max_range = quant_args['max_range']
quantized_output, _, _ = \
relay.frontend.quantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
out_dtype=out_dtype)
quantized_output, _, _ = quantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
out_dtype=out_dtype)
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output)
mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3):
Expand Down Expand Up @@ -140,24 +141,24 @@ def test_get_mkldnn_int8_scale():
range_min = -3.904039
range_max = 3.904039
expected = 0.03061991354976495
output = relay.frontend.get_mkldnn_int8_scale(range_max=range_max,
range_min=range_min)
output = get_mkldnn_int8_scale(range_max=range_max,
range_min=range_min)
assert np.allclose(output, expected)


def test_get_mkldnn_uint8_scale():
range_min = 0.0
range_max = 55.77269
expected = 0.21828841189047482
output = relay.frontend.get_mkldnn_uint8_scale(range_max=range_max,
range_min=range_min)
output = get_mkldnn_uint8_scale(range_max=range_max,
range_min=range_min)
assert np.allclose(output, expected)


def test_quantize_conv_bias_mkldnn_from_var():
bias_var = relay.var('bias', shape=(3,), dtype='float32')
bias_scale = tvm.nd.array(np.array([0.5, 0.6, 0.7]))
output = relay.frontend.quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale)
output = quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale)
assert isinstance(output, tvm.relay.expr.Call)
attrs = output.attrs
assert attrs.axis == 0
Expand All @@ -171,4 +172,4 @@ def test_quantize_conv_bias_mkldnn_from_var():
test_mkldnn_quantize()
test_get_mkldnn_int8_scale()
test_get_mkldnn_uint8_scale()
test_quantize_conv_bias_mkldnn_from_var()
test_quantize_conv_bias_mkldnn_from_var()