Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve NHWC depthwise convolution for AArch64 #6095

Merged
merged 11 commits into from
Aug 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions python/tvm/relay/op/strategy/arm_cpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,11 +167,10 @@ def conv2d_strategy_arm_cpu(attrs, inputs, out_type, target):
name="depthwise_conv2d_nchw.x86")
elif layout == "NHWC":
assert kernel_layout == "HWOI"
logger.warning("depthwise_conv2d with layout NHWC is not optimized for arm cpu.")
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.depthwise_conv2d_nhwc),
wrap_topi_schedule(topi.generic.schedule_depthwise_conv2d_nhwc),
name="depthwise_conv2d_nhwc.generic")
wrap_compute_conv2d(topi.arm_cpu.compute_depthwise_conv2d_nhwc),
wrap_topi_schedule(topi.arm_cpu.schedule_depthwise_conv2d_nhwc),
name="depthwise_conv2d_nhwc.arm_cpu")
else:
raise RuntimeError("Unsupported depthwise_conv2d layout {} for arm cpu".
format(layout))
Expand Down
8 changes: 7 additions & 1 deletion python/tvm/relay/qnn/op/legalizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,13 @@ def is_aarch64_arm():
@qnn_conv2d_legalize.register('arm_cpu')
def _qnn_conv2d_legalize_arm_cpu(attrs, inputs, types):
# ARM prefers the dtypes to be same.
if (is_aarch64_arm() and attrs["data_layout"] == "NHWC") or is_fast_int8_on_arm():
is_depthwise = relay.op.strategy.is_depthwise_conv2d(types[0].shape,
attrs['data_layout'],
types[1].shape,
attrs['kernel_layout'],
attrs['groups'])
use_int8_on_arm = (not is_depthwise) and is_aarch64_arm() and attrs["data_layout"] == "NHWC"
if use_int8_on_arm or is_fast_int8_on_arm():
return helper_change_dtypes_to_be_same(attrs, inputs, types, relay.qnn.op.conv2d)
return helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay.nn.conv2d)

Expand Down
167 changes: 166 additions & 1 deletion python/tvm/topi/arm_cpu/depthwise_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
import tvm
from tvm import te
from tvm import autotvm
from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity

from .. import nn
from ..util import traverse_inline, get_const_tuple, get_const_int
Expand All @@ -31,7 +32,6 @@ def depthwise_conv2d_nchw(_, data, kernel, strides, padding, dilation, out_dtype
"""Compute depthwise_conv2d with NCHW layout"""
return nn.depthwise_conv2d_nchw(data, kernel, strides, padding, dilation, out_dtype)


@autotvm.register_topi_schedule("depthwise_conv2d_nchw.arm_cpu")
def schedule_depthwise_conv2d_nchw(cfg, outs):
"""Schedule depthwise conv2d
Expand Down Expand Up @@ -181,6 +181,171 @@ def depthwise_conv2d_nchw_spatial_pack(cfg, data, kernel, strides, padding, dila

return _decl_spatial_pack(cfg, data, kernel, strides, padding, dilation, out_dtype, num_tile=2)

@autotvm.register_topi_compute("depthwise_conv2d_nhwc.arm_cpu")
def compute_depthwise_conv2d_nhwc(_, data, kernel, strides, padding, dilation, out_dtype):
"""TOPI compute callback for depthwise_conv2d nhwc

Parameters
----------
cfg: ConfigEntity
The config for this template

data : tvm.te.Tensor
4-D with shape [batch, in_height, in_width, in_channel]

kernel : tvm.te.Tensor
4-D with shape [filter_height, filter_width, in_channel, channel_multiplier]

strides : list of two ints
[stride_height, stride_width]

padding : list of two ints
[pad_height, pad_width]

dilation : list of two ints
[dilation_height, dilation_width]

out_dtype: str
The output type. This is used for mixed precision.

Returns
-------
output : tvm.te.Tensor
4-D with shape [batch, out_height, out_width, out_channel]
"""

out_dtype = out_dtype or data.dtype

N, IH, IW, IC = get_const_tuple(data.shape)

if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation

KH, KW, IC, channel_multiplier = get_const_tuple(kernel.shape)

dilated_kernel_h = (KH - 1) * dilation_h + 1
dilated_kernel_w = (KW - 1) * dilation_w + 1

pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (dilated_kernel_h, dilated_kernel_w))
HSTR, WSTR = strides if isinstance(strides, (tuple, list)) else (strides, strides)

OH = (IH + pad_top + pad_down - dilated_kernel_h) // HSTR + 1
OW = (IW + pad_left + pad_right - dilated_kernel_w) // WSTR + 1

if pad_top or pad_left or pad_down or pad_right:
data_pad = nn.pad(data, [0, pad_top, pad_left, 0], [0, pad_down, pad_right, 0],
name="data_pad")
else:
data_pad = data

output_shape = (N, OH, OW, IC*channel_multiplier)

idxdiv = tvm.tir.indexdiv
idxmod = tvm.tir.indexmod

reduce_h = te.reduce_axis((0, KH), name='reduce_h')
reduce_w = te.reduce_axis((0, KW), name='reduce_w')

out = te.compute(output_shape, lambda n, h, w, c:
te.sum(data_pad[n,
HSTR*h+dilation_h*reduce_h,
w*WSTR+reduce_w*dilation_w,
idxdiv(c, channel_multiplier)].astype(out_dtype) *
kernel[reduce_h,
reduce_w,
idxdiv(c, channel_multiplier),
idxmod(c, channel_multiplier)].astype(out_dtype),
axis=[reduce_h, reduce_w]),
name='depthwise_conv2d_nhwc_output')
return out

@autotvm.register_topi_schedule("depthwise_conv2d_nhwc.arm_cpu")
def schedule_depthwise_conv2d_nhwc(cfg, outs):
"""Create the schedule for depthwise_conv2d_nchw_spatial_pack"""
outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs
s = te.create_schedule([x.op for x in outs])
out = outs[0]

##### space definition begin #####
n, h, w, c = s[out].op.axis
cfg.define_split('tile_c', c, num_outputs=2)
_, hi = cfg.define_split('tile_h', h, num_outputs=2)
_, wi = cfg.define_split('tile_w', w, num_outputs=2)
cfg.define_knob('locate_output', [0, 1])

# fallback support
if cfg.is_fallback:
cfg['tile_c'] = SplitEntity([-1, 8])
cfg['tile_h'] = SplitEntity([-1, 2])
cfg['tile_w'] = SplitEntity([-1, 2])
cfg['locate_output'] = OtherOptionEntity(1)
##### space definition end #####

def schedule_conv(conv):
conv_data = conv.op.input_tensors[0]

n, w, h, c = conv.op.axis
r_h, r_w = conv.op.reduce_axis
ho, hi = cfg['tile_h'].apply(s, conv, h)
wo, wi = cfg['tile_w'].apply(s, conv, w)
co, ci = cfg['tile_c'].apply(s, conv, c)

if conv_data.name == "data_pad":
assert isinstance(conv_data.op, tvm.te.ComputeOp)
# Define a policy for padding computation
cfg.define_knob('data_pad_inline', [1, 2, 3])
if cfg.is_fallback:
cfg['data_pad_inline'] = OtherOptionEntity(3)
if cfg['data_pad_inline'].val == 1:
s[conv_data].vectorize(list(s[conv_data].op.axis)[-1])
s[conv_data].compute_at(s[conv], ho)
if cfg['data_pad_inline'].val == 2:
s[conv_data].vectorize(list(s[conv_data].op.axis)[-1])
s[conv_data].compute_at(s[conv], wo)
if cfg['data_pad_inline'].val == 3:
s[conv_data].compute_inline()

s[conv].reorder(n, ho, wo, co, hi, wi, r_h, r_w, ci)
fused_n_ho = s[conv].fuse(n, ho)
s[conv].vectorize(ci)
return fused_n_ho

def schedule_conv_out(out):
n, h, w, c = out.op.axis
co, ci = cfg['tile_c'].apply(s, out, c)
wo, wi = cfg['tile_w'].apply(s, out, w)
ho, hi = cfg['tile_h'].apply(s, out, h)
s[out].reorder(n, ho, wo, co, hi, wi)

if out.dtype in ['int8', 'uint8']:
# In case of quantized convolution further split the channel in batches of 4 elements
# so that we can use arm intrinsics to run fixed_point_multiplication
ci_outer, ci_inner = s[out].split(ci, 4)
s[out].vectorize(ci_inner)

fused_n_ho = s[out].fuse(n, ho)
return hi, wi, fused_n_ho

def _callback(op):
if op.name == 'depthwise_conv2d_nhwc_output':
conv = op.output(0)
if conv != out:
hi, wi, p_axis = schedule_conv_out(out)
schedule_conv(conv)
if cfg['locate_output'].val == 0:
s[conv].compute_at(s[out], hi)
if cfg['locate_output'].val == 1:
s[conv].compute_at(s[out], wi)
else:
p_axis = schedule_conv(out)

s[out].parallel(p_axis)

traverse_inline(s, outs[0].op, _callback)
return s

@autotvm.register_topi_schedule("depthwise_conv2d_nchw_spatial_pack.arm_cpu")
def schedule_depthwise_conv2d_nchw_spatial_pack(cfg, outs):
Expand Down
1 change: 1 addition & 0 deletions tests/python/topi/python/test_topi_depthwise_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@

_depthwise_conv2d_nhwc_implement = {
"generic": (topi.nn.depthwise_conv2d_nhwc, topi.generic.schedule_depthwise_conv2d_nhwc),
"arm_cpu": (topi.arm_cpu.compute_depthwise_conv2d_nhwc, topi.arm_cpu.schedule_depthwise_conv2d_nhwc),
"gpu": (topi.nn.depthwise_conv2d_nhwc, topi.cuda.schedule_depthwise_conv2d_nhwc),
}

Expand Down