Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[COREML]Reduceops support added to frontend #6252

Merged
merged 1 commit into from
Aug 12, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions python/tvm/relay/frontend/coreml.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,6 +377,40 @@ def _UnaryFunctionLayerParams(op, inexpr, etab):
raise tvm.error.OpAttributeUnImplemented(msg.format(op_type))


def _ReduceLayerParams(op, inexpr, etab):
axis = op.axis
if axis == op.CHW:
axis = [-3, -2, -1]
elif axis == op.HW:
axis = [-2, -1]
elif axis == op.C:
axis = -3
elif axis == op.H:
axis = -2
elif axis == op.W:
axis = -1
else:
msg = 'Reduce axis value {} is not supported in frontend CoreML.'
raise tvm.error.OpAttributeUnImplemented(msg.format(axis))

mode = op.mode
if mode == op.SUM:
return _op.sum(inexpr, axis=axis, keepdims=True)
elif mode == op.AVG:
return _op.mean(inexpr, axis=axis, keepdims=True)
elif mode == op.PROD:
return _op.prod(inexpr, axis=axis, keepdims=True)
elif mode == op.MIN:
return _op.min(inexpr, axis=axis, keepdims=True)
elif mode == op.MAX:
return _op.max(inexpr, axis=axis, keepdims=True)
elif mode == op.ARGMAX:
return _op.argmax(inexpr, axis=axis, keepdims=True)
else:
msg = 'Reduce mode value {} is not supported in frontend CoreML.'
raise tvm.error.OpAttributeUnImplemented(msg.format(mode))


_convert_map = {
'NeuralNetworkMeanImage': _NeuralNetworkMeanImage,
'NeuralNetworkImageScaler': _NeuralNetworkImageScaler,
Expand All @@ -400,6 +434,7 @@ def _UnaryFunctionLayerParams(op, inexpr, etab):
'MaxLayerParams': _MaxLayerParams,
'MinLayerParams': _MinLayerParams,
'UnaryFunctionLayerParams': _UnaryFunctionLayerParams,
'ReduceLayerParams': _ReduceLayerParams,
}

# SAME padding: https://www.tensorflow.org/api_guides/python/nn
Expand Down
62 changes: 62 additions & 0 deletions tests/python/frontend/coreml/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -525,6 +525,67 @@ def test_forward_unary():
verify_unary_threshold((1, 3, 20, 20), alpha=5.0)


def test_forward_reduce():
from enum import Enum
class ReduceAxis(Enum):
CHW = 0
HW = 1
C = 2
H = 3
W = 4

def _verify_reduce(input_dim, mode, axis, ref_func, dtype='float32'):
print(input_dim, mode, axis)
a_np = np.random.uniform(size=input_dim).astype(dtype)

# translate to axis from coreml format
if axis == ReduceAxis.CHW:
np_axis = (-3, -2, -1)
elif axis == ReduceAxis.HW:
np_axis = (-2, -1)
elif axis == ReduceAxis.C:
np_axis = -3
elif axis == ReduceAxis.H:
np_axis = -2
elif axis == ReduceAxis.W:
np_axis = -1

if ref_func == np.argmax:
ref_val = np.expand_dims(ref_func(a_np, np_axis), np_axis).astype(dtype)
else:
ref_val = ref_func(a_np, np_axis, keepdims=True)

inputs = [('input', datatypes.Array(*input_dim))]
output = [('output', datatypes.Array(*ref_val.shape))]
builder = NeuralNetworkBuilder(inputs, output)
builder.add_reduce(name=mode,
input_name='input',
output_name='output',
axis=axis.name,
mode=mode)

model = cm.models.MLModel(builder.spec)
for target, ctx in ctx_list():
out = run_tvm_graph(model, target, ctx, [a_np],
['input'], ref_val.shape, dtype)
tvm.testing.assert_allclose(out, ref_val, rtol=1e-5, atol=1e-5)

dshapes = [[10, 10], [1, 10, 10], [1, 3, 10, 10]]
for dshape in dshapes:
for axis in ReduceAxis:
if len(dshape) < 3 and axis in [ReduceAxis.CHW, ReduceAxis.C]:
# input must have rank at least 3
continue
_verify_reduce(dshape, "sum", axis, np.sum)
_verify_reduce(dshape, "avg", axis, np.mean)
_verify_reduce(dshape, "prod", axis, np.prod)
_verify_reduce(dshape, "min", axis, np.min)
_verify_reduce(dshape, "max", axis, np.max)
if axis in [ReduceAxis.C, ReduceAxis.H, ReduceAxis.W]:
# For mode ArgMax, axis must be [-1] or [-2] or [-3]
_verify_reduce(dshape, "argmax", axis, np.argmax, dtype='int32')


def verify_image_scaler(input_dim, blue_bias=0.0, green_bias=0.0, red_bias=0.0, image_scale=1.0):
dtype = 'float32'
a_np = np.random.uniform(size=input_dim).astype(dtype)
Expand Down Expand Up @@ -602,6 +663,7 @@ def test_forward_convolution():
test_forward_max()
test_forward_min()
test_forward_unary()
test_forward_reduce()
test_mobilenet_checkonly()
test_resnet50_checkonly()
test_forward_image_scaler()
Expand Down