Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TRT Dynamic Reshape Fix #7412

Merged
merged 7 commits into from
Feb 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 6 additions & 7 deletions python/tvm/relay/op/contrib/tensorrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -615,7 +615,6 @@ def layout_transform_annotate_fn(expr): # pylint: disable=unused-variable
@_register_external_dynamic_check_func("reshape")
def reshape_annotate_fn(expr): # pylint: disable=unused-variable
"""Check if reshape is supported by TensorRT."""

attrs, args = expr.attrs, expr.args
if args[0].checked_type.dtype != "float32":
logger.info("Only float32 inputs are supported for TensorRT.")
Expand All @@ -629,23 +628,23 @@ def reshape_annotate_fn(expr): # pylint: disable=unused-variable
if len(new_shape) == 0 or len(shape) == 0:
logger.info("reshape: Can't reshape to or from scalar.")
return False

dynamic_reshape = any([isinstance(x, tvm.tir.expr.Any) for x in shape])

if dynamic_reshape:
# Make sure that the batch dim is unmodified.
if int(new_shape[0]) < 0:
for shape_val, new_shape_val in enumerate(shape[1:], new_shape[1:]):
for shape_val, new_shape_val in zip(shape[1:], new_shape[1:]):
if not (
isinstance(shape_val, int)
and isinstance(new_shape_val, int)
isinstance(shape_val, (int, tvm.tir.expr.IntImm))
and isinstance(new_shape_val, (int, tvm.tir.expr.IntImm))
and int(shape_val) == int(new_shape_val)
):
return False
elif int(new_shape[0]) > 0:
# Currently we only allow dim[0] to be Any, so this branch will always be False
if not (
isinstance(shape[0], int)
and isinstance(new_shape[0], int)
isinstance(shape[0], (int, tvm.tir.expr.IntImm))
and isinstance(new_shape[0], (int, tvm.tir.expr.IntImm))
and int(shape[0]) == int(new_shape[0])
):
return False
Expand Down
101 changes: 101 additions & 0 deletions tests/python/contrib/test_tensorrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from tvm.contrib import graph_runtime, utils
from tvm.runtime.vm import VirtualMachine
from tvm.relay import Any, GlobalVar, transform
from tvm.relay.expr_functor import ExprVisitor
from typing import Dict, Tuple, Union
from tvm.contrib.download import download
from tvm.relay.op.contrib import tensorrt
Expand Down Expand Up @@ -631,6 +632,106 @@ def get_graph(x_shape, new_shape):
run_and_verify_func(get_graph((1, 1, 2, 3), (1, 6)))


class AreOpsOnGraph(ExprVisitor):
"""
Visits the Graph recursively and checks if it contains ops in the op_list
"""

def __init__(self, op_list):
ExprVisitor.__init__(self)
self.op_list = op_list
self.on_graph = False

def visit_call(self, call):
if isinstance(call.op, tvm.tir.op.Op):
if str(call.op) in self.op_list:
self.on_graph = True

return super().visit_call(call)

def are_ops_on_graph(self, subgraph) -> bool:
"""
This function recursively visits the graph and checks if op_list ops are ongraph"
"""
self.visit(subgraph)
return self.on_graph


def are_ops_on_trt(mod, op_list):
for subgraph in mod.get_global_vars():
name = subgraph.name_hint
op_on_trt = False
op_on_tvm = True
if name == "main":
op_on_tvm = AreOpsOnGraph(op_list).are_ops_on_graph(mod[name].body)
elif mod[name].attrs and mod[name].attrs["Compiler"] == "tensorrt":
op_on_trt = AreOpsOnGraph(op_list).are_ops_on_graph(mod[name].body)
else:
op_on_tvm &= AreOpsOnGraph(op_list).are_ops_on_graph(mod[name].body)

if not op_on_trt or op_on_tvm:
return False

return True


def test_dynamic_reshape():
if skip_codegen_test():
return

def test_run(x_data_list, x_shape, new_shape, should_offload_to_trt):
result_arr = [{} for _ in range(len(x_data_list))]
for use_trt in [True, False]:
x = relay.var("x", shape=x_shape, dtype="float32")
out = relay.reshape(x, new_shape)
f = relay.Function([x], out)
mod = tvm.IRModule()
mod["main"] = f
if use_trt:
mod, _ = tensorrt.partition_for_tensorrt(
mod, params={}, remove_no_mac_subgraphs=False
)
assert are_ops_on_trt(mod, op_list=["reshape"]) == should_offload_to_trt
if not skip_runtime_test():
with relay.build_config(opt_level=3):
relay_exec = relay.create_executor("vm", mod=mod, ctx=tvm.cpu(0), target="llvm")

for i, x_data in enumerate(x_data_list):
result_arr[i][use_trt] = relay_exec.evaluate()(x_data)

if not skip_runtime_test():
for i in range(len(x_data_list)):
assert_result_dict_holds(result_arr[i])

dim_values = [1, 1, 0, 2, 3, 0, 1, 3, 2]
x_shape = (relay.Any(), 3, 2, 3)
x_data_list = [
np.ones([dim_value] + list(x_shape)[1:]).astype("float32") for dim_value in dim_values
]
new_shape = (-1, 3, 2, 3)
should_offload_to_trt = True
test_run(x_data_list, x_shape, new_shape, should_offload_to_trt)

dim_values = [1, 1, 0, 2, 3, 0, 1, 3, 2]
x_shape = (relay.Any(), 3, 2, 3)
x_data_list = [
np.ones([dim_value] + list(x_shape)[1:]).astype("float32") for dim_value in dim_values
]
new_shape = (-1, 1, 2, 3)
should_offload_to_trt = False
test_run(x_data_list, x_shape, new_shape, should_offload_to_trt)

dim_values = [1, 1, 0, 2, 3, 0, 1, 3, 2]
x_shape = (1, relay.Any(), 2, 3)
x_data_list = [
np.ones(list(x_shape[:1]) + [dim_value] + list(x_shape)[2:]).astype("float32")
for dim_value in dim_values
]
new_shape = (1, -1, 2, 3)
should_offload_to_trt = False
test_run(x_data_list, x_shape, new_shape, should_offload_to_trt)


def test_transpose():
def get_graph(x_shape, order):
x = relay.var("x", shape=(x_shape), dtype="float32")
Expand Down