Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay] Improve reduction op layout propagation for packed input #9253

Merged
merged 5 commits into from
Oct 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 30 additions & 12 deletions src/relay/op/tensor/reduce.cc
Original file line number Diff line number Diff line change
Expand Up @@ -149,23 +149,41 @@ InferCorrectLayoutOutput ReduceInferCorrectLayout(const Attrs& attrs,
tvm::Array<tvm::Integer> new_r_axes;
std::string inferred_in_string = "";
std::string inferred_out_string = "";
int axis_index = 0;
for (auto iter_var : layout->axes) {
const auto& layout_axis = LayoutAxis::Get(iter_var);
auto push_new_axis = [&](const std::string& layout_dim, int axis) {
if ((old_r_dims.count(layout_dim) && !params->exclude) ||
(!old_r_dims.count(layout_dim) && params->exclude)) {
new_r_axes.push_back(tvm::Integer(axis));
return true;
}
return false;
};
for (size_t axis_index = 0; axis_index < layout->axes.size(); ++axis_index) {
const auto& layout_axis = LayoutAxis::Get(layout->axes[axis_index]);
const std::string& layout_dim = layout_axis.name();
// Collect only the primal axis.
if (layout_axis.IsPrimal()) {
if (old_r_dims.count(layout_dim) && !params->exclude) {
new_r_axes.push_back(tvm::Integer(axis_index));
}
if (!old_r_dims.count(layout_dim) && params->exclude) {
new_r_axes.push_back(tvm::Integer(axis_index));
}
push_new_axis(layout_dim, axis_index);
inferred_in_string += layout_dim;
if (!old_r_dims.count(layout_dim) || params->keepdims) {
inferred_out_string += layout_dim;
}
inferred_in_string += layout_dim;
axis_index++;
} else {
// For example, if the original layout is NCHW, the new layout is NCHW8c, and the original
// reduce axes is [1], the new reduce axes become [1, 4].
auto primal_dim = layout_axis.ToPrimal().name();
auto packed_dim = std::to_string(layout.FactorOf(layout_axis)) + layout_dim;
inferred_in_string += packed_dim;
if (push_new_axis(primal_dim, axis_index)) {
if (params->exclude) {
// The primal axis is not reduced, so keep the input packed dim.
inferred_out_string += packed_dim;
} else {
// If the primal axis is part of reduce axes in the original layout, the inner dim
// becomes 1 after reduction.
inferred_out_string += "1" + layout_dim;
}
} else {
inferred_out_string += packed_dim;
}
}
}

Expand Down
22 changes: 12 additions & 10 deletions tests/python/relay/test_pass_alter_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -507,20 +507,23 @@ def expected():
bias = relay.layout_transform(bias, src_layout="NHWC", dst_layout="NCHW")
bias = relay.layout_transform(bias, src_layout="NCHW", dst_layout="NCHW16c")
add = relay.add(y, bias)
y = relay.layout_transform(add, src_layout="NCHW16c", dst_layout="NCHW")
mean = relay.mean(y, axis=1, exclude=True)
var = relay.variance(y, axis=1, exclude=True)
mean = relay.mean(add, axis=[1, 4], exclude=True)
var = relay.variance(add, axis=[1, 4], exclude=True)
denom = relay.const(1.0) / relay.sqrt(var + relay.const(1e-05))
gamma = relay.var("gamma", shape=(16,))
denom = denom * gamma
denom_c16c = denom * relay.layout_transform(gamma, src_layout="C", dst_layout="C16c")
denom = relay.layout_transform(denom_c16c, src_layout="C16c", dst_layout="C")
denom_expand1 = relay.expand_dims(denom, axis=1, num_newaxis=2)
denom_expand2 = relay.expand_dims(denom_expand1, axis=0)
denom_nchwc16 = relay.layout_transform(
denom_expand2, src_layout="NCHW", dst_layout="NCHW16c"
)
out = add * denom_nchwc16
beta = relay.var("beta", shape=(16,))
numerator = (-mean) * denom + beta
numerator_c16c = (-mean) * denom_c16c + relay.layout_transform(
beta, src_layout="C", dst_layout="C16c"
)
numerator = relay.layout_transform(numerator_c16c, src_layout="C16c", dst_layout="C")
numerator_expand1 = relay.expand_dims(numerator, axis=1, num_newaxis=2)
numerator_expand2 = relay.expand_dims(numerator_expand1, axis=0)
numerator_nchwc16 = relay.layout_transform(
Expand Down Expand Up @@ -1096,8 +1099,8 @@ def expected_nchw():
y = relay.nn.conv2d(
y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c"
)
ret = relay.layout_transform(y, "NCHW16c", "NCHW")
ret = relay.sum(ret, axis=[1], keepdims=True)
ret = relay.sum(y, axis=[1, 4], keepdims=True)
ret = relay.layout_transform(ret, "NCHW1c", "NCHW")
y = relay.Function(analysis.free_vars(ret), ret)
return y

Expand Down Expand Up @@ -1126,9 +1129,8 @@ def expected_nhwc():
y = relay.nn.conv2d(
y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c"
)
ret = relay.layout_transform(y, "NCHW16c", "NCHW")
ret = relay.sum(ret, axis=[1], keepdims=True)
ret = relay.layout_transform(ret, "NCHW", "NHWC")
ret = relay.sum(y, axis=[1, 4], keepdims=True)
ret = relay.layout_transform(ret, "NCHW1c", "NHWC")
y = relay.Function(analysis.free_vars(ret), ret)
return y

Expand Down