Skip to content

Commit

Permalink
Merge branch 'ggerganov:master' into master
Browse files Browse the repository at this point in the history
  • Loading branch information
apicalshark authored Oct 19, 2024
2 parents e30bfc6 + cda0e4b commit 69ceca8
Show file tree
Hide file tree
Showing 23 changed files with 515 additions and 379 deletions.
4 changes: 2 additions & 2 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -955,7 +955,7 @@ struct common_init_result common_init_from_params(common_params & params) {
}

if (llama_model_has_encoder(model)) {
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = bos;
Expand All @@ -964,7 +964,7 @@ struct common_init_result common_init_from_params(common_params & params) {
tmp.push_back(decoder_start_token_id);
}
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_cache_clear(lctx);
llama_synchronize(lctx);
Expand Down
1 change: 0 additions & 1 deletion examples/batched-bench/batched-bench.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,6 @@ int main(int argc, char ** argv) {
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};

const int ret = llama_decode(ctx, batch_view);
Expand Down
2 changes: 1 addition & 1 deletion examples/cvector-generator/cvector-generator.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -339,7 +339,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {

static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
Expand Down
2 changes: 1 addition & 1 deletion examples/eval-callback/eval-callback.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ static bool run(llama_context * ctx, const common_params & params) {

std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);

if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
Expand Down
13 changes: 11 additions & 2 deletions examples/imatrix/imatrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -496,6 +496,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
// clear the KV cache
llama_kv_cache_clear(ctx);

llama_batch batch = llama_batch_init(n_batch, 0, 1);

for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
Expand All @@ -508,9 +510,14 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
}

// TODO: use batch.logits to save computations instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
common_batch_clear(batch);
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
}

if (llama_decode(ctx, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return false;
}

Expand All @@ -523,6 +530,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
}
}

llama_batch_free(batch);

const auto t_end = std::chrono::high_resolution_clock::now();

if (i == 0) {
Expand Down
2 changes: 1 addition & 1 deletion examples/infill/infill.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,7 @@ int main(int argc, char ** argv) {

LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());

if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
Expand Down
16 changes: 8 additions & 8 deletions examples/llama-bench/llama-bench.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1428,7 +1428,7 @@ struct sql_printer : public printer {
}
};

static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);

const llama_model * model = llama_get_model(ctx);
Expand All @@ -1444,14 +1444,14 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_bat
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
n_processed += n_tokens;
}

llama_synchronize(ctx);
}

static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);

const llama_model * model = llama_get_model(ctx);
Expand All @@ -1460,7 +1460,7 @@ static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads)
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;

for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
llama_decode(ctx, llama_batch_get_one(&token, 1));
llama_synchronize(ctx);
token = std::rand() % n_vocab;
}
Expand Down Expand Up @@ -1596,13 +1596,13 @@ int main(int argc, char ** argv) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
}
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
}
test_gen(ctx, 1, 0, t.n_threads);
test_gen(ctx, 1, t.n_threads);
}

for (int i = 0; i < params.reps; i++) {
Expand All @@ -1614,13 +1614,13 @@ int main(int argc, char ** argv) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
test_gen(ctx, t.n_gen, t.n_threads);
}

uint64_t t_ns = get_time_ns() - t_start;
Expand Down
3 changes: 0 additions & 3 deletions examples/llama.android/llama/src/main/cpp/llama-android.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -283,9 +283,6 @@ Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens,
nullptr,
nullptr,
nullptr,
0,
0,
0,
};

if (embd) {
Expand Down
2 changes: 1 addition & 1 deletion examples/llava/llava-cli.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
Expand Down
38 changes: 36 additions & 2 deletions examples/llava/llava.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -401,6 +401,39 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
return true;
}

struct llava_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};

bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));

Expand All @@ -409,8 +442,9 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
float * embd = image_embed->embed+i*n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
Expand Down
2 changes: 1 addition & 1 deletion examples/llava/minicpmv-cli.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
Expand Down
4 changes: 2 additions & 2 deletions examples/lookahead/lookahead.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -89,8 +89,8 @@ int main(int argc, char ** argv) {
const auto t_enc_start = ggml_time_us();

// eval the prompt
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));

for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
Expand Down
4 changes: 2 additions & 2 deletions examples/lookup/lookup.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -89,8 +89,8 @@ int main(int argc, char ** argv){

const auto t_enc_start = ggml_time_us();

llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));

const auto t_enc_end = ggml_time_us();

Expand Down
4 changes: 2 additions & 2 deletions examples/main/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -528,7 +528,7 @@ int main(int argc, char ** argv) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();

if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) {
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
Expand Down Expand Up @@ -648,7 +648,7 @@ int main(int argc, char ** argv) {

LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());

if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
Expand Down
1 change: 0 additions & 1 deletion examples/parallel/parallel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -308,7 +308,6 @@ int main(int argc, char ** argv) {
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};

const int ret = llama_decode(ctx, batch_view);
Expand Down
27 changes: 22 additions & 5 deletions examples/perplexity/perplexity.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -408,14 +408,21 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
// clear the KV cache
llama_kv_cache_clear(ctx);

llama_batch batch = llama_batch_init(n_batch, 0, 1);

for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);

common_batch_clear(batch);
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
}

//LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
// TODO: use llama_batch.logits instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
if (llama_decode(ctx, batch)) {
//LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return {tokens, -1, logit_history, prob_history};
}

Expand All @@ -435,6 +442,8 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
}
}

llama_batch_free(batch);

const auto t_end = std::chrono::high_resolution_clock::now();

if (i == 0) {
Expand Down Expand Up @@ -704,7 +713,6 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};

const int ret = llama_decode(ctx, batch_view);
Expand Down Expand Up @@ -1791,6 +1799,8 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
// clear the KV cache
llama_kv_cache_clear(ctx);

llama_batch batch = llama_batch_init(n_batch, 0, 1);

for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
Expand All @@ -1803,9 +1813,14 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
}

// TODO: use llama_batch.logits instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
common_batch_clear(batch);
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
}

if (llama_decode(ctx, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return;
}

Expand All @@ -1818,6 +1833,8 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
}
}

llama_batch_free(batch);

const auto t_end = std::chrono::high_resolution_clock::now();

if (i == 0) {
Expand Down
Loading

0 comments on commit 69ceca8

Please sign in to comment.