Skip to content

Commit

Permalink
Ravin Kohli: [FIX] Documentation and docker workflow file (#449)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Jul 14, 2022
1 parent 32a84e3 commit 1a87024
Show file tree
Hide file tree
Showing 41 changed files with 280 additions and 245 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_plot_over_time_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_plot_over_time_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,7 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
<div class="viewcode-block" id="TimeSeriesForecastingTask"><a class="viewcode-back" href="../../../api.html#autoPyTorch.api.time_series_forecasting.TimeSeriesForecastingTask">[docs]</a><span class="k">class</span> <span class="nc">TimeSeriesForecastingTask</span><span class="p">(</span><span class="n">BaseTask</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Time Series Forecasting API to the pipelines.</span>

<span class="sd"> Args:</span>
<span class="sd"> seed (int):</span>
<span class="sd"> seed to be used for reproducibility.</span>
Expand Down Expand Up @@ -367,6 +368,7 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
<span class="n">Y</span><span class="o">=</span><span class="n">y_train</span><span class="p">,</span>
<span class="n">X_test</span><span class="o">=</span><span class="n">X_test</span><span class="p">,</span>
<span class="n">Y_test</span><span class="o">=</span><span class="n">y_test</span><span class="p">,</span>
<span class="n">dataset_name</span><span class="o">=</span><span class="n">dataset_name</span><span class="p">,</span>
<span class="n">freq</span><span class="o">=</span><span class="n">freq</span><span class="p">,</span>
<span class="n">start_times</span><span class="o">=</span><span class="n">start_times</span><span class="p">,</span>
<span class="n">series_idx</span><span class="o">=</span><span class="n">series_idx</span><span class="p">,</span>
Expand Down Expand Up @@ -513,7 +515,25 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
<span class="sd"> for each pipeline and results will be available via cv_results</span>
<span class="sd"> precision (int), (default=32): Numeric precision used when loading</span>
<span class="sd"> ensemble data. Can be either &#39;16&#39;, &#39;32&#39; or &#39;64&#39;.</span>
<span class="sd"> disable_file_output (Union[bool, List]):</span>
<span class="sd"> disable_file_output (Optional[List[Union[str, DisableFileOutputParameters]]]):</span>
<span class="sd"> Used as a list to pass more fine-grained</span>
<span class="sd"> information on what to save. Must be a member of `DisableFileOutputParameters`.</span>
<span class="sd"> Allowed elements in the list are:</span>

<span class="sd"> + `y_optimization`:</span>
<span class="sd"> do not save the predictions for the optimization set,</span>
<span class="sd"> which would later on be used to build an ensemble. Note that SMAC</span>
<span class="sd"> optimizes a metric evaluated on the optimization set.</span>
<span class="sd"> + `pipeline`:</span>
<span class="sd"> do not save any individual pipeline files</span>
<span class="sd"> + `pipelines`:</span>
<span class="sd"> In case of cross validation, disables saving the joint model of the</span>
<span class="sd"> pipelines fit on each fold.</span>
<span class="sd"> + `y_test`:</span>
<span class="sd"> do not save the predictions for the test set.</span>
<span class="sd"> + `all`:</span>
<span class="sd"> do not save any of the above.</span>
<span class="sd"> For more information check `autoPyTorch.evaluation.utils.DisableFileOutputParameters`.</span>
<span class="sd"> load_models (bool), (default=True): Whether to load the</span>
<span class="sd"> models after fitting AutoPyTorch.</span>
<span class="sd"> suggested_init_models: Optional[List[str]]</span>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,22 +35,22 @@ Image Classification
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 65536/26421880 [00:00<01:10, 374644.14it/s] 1%| | 163840/26421880 [00:00<00:41, 631006.64it/s] 2%|1 | 425984/26421880 [00:00<00:22, 1140468.14it/s] 5%|4 | 1310720/26421880 [00:00<00:07, 3470288.06it/s] 13%|#3 | 3473408/26421880 [00:00<00:03, 7608945.79it/s] 31%|###1 | 8290304/26421880 [00:00<00:00, 18277293.49it/s] 47%|####7 | 12419072/26421880 [00:00<00:00, 21138658.10it/s] 66%|######5 | 17399808/26421880 [00:01<00:00, 28063442.88it/s] 82%|########1 | 21561344/26421880 [00:01<00:00, 27247015.88it/s] 100%|##########| 26421880/26421880 [00:01<00:00, 19940201.20it/s]
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:52, 235602.90it/s] 0%| | 65536/26421880 [00:00<01:52, 234351.38it/s] 0%| | 131072/26421880 [00:00<01:17, 340594.04it/s] 1%| | 229376/26421880 [00:00<00:54, 483036.36it/s] 2%|1 | 458752/26421880 [00:00<00:28, 898436.87it/s] 3%|3 | 917504/26421880 [00:00<00:14, 1705017.51it/s] 7%|7 | 1867776/26421880 [00:00<00:07, 3360695.16it/s] 14%|#4 | 3702784/26421880 [00:01<00:03, 6451569.09it/s] 26%|##5 | 6750208/26421880 [00:01<00:01, 11225603.32it/s] 37%|###7 | 9863168/26421880 [00:01<00:01, 14590423.72it/s] 49%|####9 | 13008896/26421880 [00:01<00:00, 16972192.00it/s] 61%|###### | 16056320/26421880 [00:01<00:00, 18420560.72it/s] 72%|#######1 | 19005440/26421880 [00:01<00:00, 19207823.64it/s] 84%|########3 | 22085632/26421880 [00:01<00:00, 20031175.65it/s] 95%|#########5| 25231360/26421880 [00:02<00:00, 20738665.14it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 12457424.40it/s]
Extracting ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 333885.02it/s]
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 205829.78it/s] 100%|##########| 29515/29515 [00:00<00:00, 205327.60it/s]
Extracting ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0/4422102 [00:00<?, ?it/s] 1%|1 | 65536/4422102 [00:00<00:11, 376169.94it/s] 5%|5 | 229376/4422102 [00:00<00:05, 709739.76it/s] 20%|## | 884736/4422102 [00:00<00:01, 2110100.56it/s] 72%|#######1 | 3178496/4422102 [00:00<00:00, 7798515.95it/s] 100%|##########| 4422102/4422102 [00:00<00:00, 6345915.96it/s]
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:18, 233477.25it/s] 1%|1 | 65536/4422102 [00:00<00:18, 232894.04it/s] 3%|2 | 131072/4422102 [00:00<00:12, 339241.27it/s] 5%|5 | 229376/4422102 [00:00<00:08, 480773.14it/s] 10%|9 | 425984/4422102 [00:00<00:04, 811302.76it/s] 20%|## | 884736/4422102 [00:00<00:02, 1643749.67it/s] 39%|###9 | 1736704/4422102 [00:00<00:00, 3085506.46it/s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 6031981.20it/s] 100%|##########| 4422102/4422102 [00:01<00:00, 3921463.52it/s]
Extracting ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 42254945.19it/s]
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 37947762.73it/s]
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw

Pipeline CS:
Expand Down Expand Up @@ -85,25 +85,23 @@ Image Classification
Pipeline Random Config:
________________________________________
Configuration(values={
'image_augmenter:GaussianBlur:sigma_min': 0.5986757047003219,
'image_augmenter:GaussianBlur:sigma_offset': 1.6405649910315916,
'image_augmenter:GaussianBlur:sigma_min': 1.800750044920493,
'image_augmenter:GaussianBlur:sigma_offset': 0.0008507475449754942,
'image_augmenter:GaussianBlur:use_augmenter': True,
'image_augmenter:GaussianNoise:sigma_offset': 2.8469479270927325,
'image_augmenter:GaussianNoise:use_augmenter': True,
'image_augmenter:GaussianNoise:use_augmenter': False,
'image_augmenter:RandomAffine:use_augmenter': False,
'image_augmenter:RandomCutout:p': 0.9357778536297661,
'image_augmenter:RandomCutout:use_augmenter': True,
'image_augmenter:Resize:use_augmenter': True,
'image_augmenter:ZeroPadAndCrop:percent': 0.013520874232656022,
'normalizer:__choice__': 'NoNormalizer',
'image_augmenter:RandomCutout:use_augmenter': False,
'image_augmenter:Resize:use_augmenter': False,
'image_augmenter:ZeroPadAndCrop:percent': 0.3938396231176561,
'normalizer:__choice__': 'ImageNormalizer',
})

Fitting the pipeline...
________________________________________
ImageClassificationPipeline
________________________________________
0-) normalizer:
NoNormalizer
ImageNormalizer

1-) preprocessing:
EarlyPreprocessing
Expand Down Expand Up @@ -175,7 +173,7 @@ Image Classification
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 4.898 seconds)
**Total running time of the script:** ( 0 minutes 7.321 seconds)


.. _sphx_glr_download_examples_20_basics_example_image_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f755cba6820>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f2407c75af0>
Expand Down Expand Up @@ -190,7 +190,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 18.288 seconds)
**Total running time of the script:** ( 5 minutes 24.577 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f75fa043ee0>
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f248d0d5d90>
Expand Down Expand Up @@ -167,7 +167,7 @@ Print the final ensemble performance
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
| 3 | None | LGBMLearner | 0.04 |
autoPyTorch results:
Dataset name: 9e644a32-01dc-11ed-881e-fb671a47a91f
Dataset name: 59922def-0351-11ed-8824-d5cce4119db9
Optimisation Metric: r2
Best validation score: 0.8670098636440993
Number of target algorithm runs: 24
Expand All @@ -183,7 +183,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 35.079 seconds)
**Total running time of the script:** ( 5 minutes 36.793 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,7 @@ Search for an ensemble of machine learning algorithms
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 3.424 seconds)
**Total running time of the script:** ( 1 minutes 3.199 seconds)


.. _sphx_glr_download_examples_20_basics_example_time_series_forecasting.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,14 @@

Computation times
=================
**12:01.689** total execution time for **examples_20_basics** files:
**12:11.890** total execution time for **examples_20_basics** files:

+----------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:35.079 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:36.793 | 0.0 MB |
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:18.288 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:24.577 | 0.0 MB |
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_time_series_forecasting.py` (``example_time_series_forecasting.py``) | 01:03.424 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_time_series_forecasting.py` (``example_time_series_forecasting.py``) | 01:03.199 | 0.0 MB |
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:04.898 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:07.321 | 0.0 MB |
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
Loading

0 comments on commit 1a87024

Please sign in to comment.