Skip to content

Commit

Permalink
nabenabe0928: [refactor] Fix SparseMatrixType --> spmatrix and add is…
Browse files Browse the repository at this point in the history
…pandas (#397)
  • Loading branch information
Github Actions committed Mar 2, 2022
1 parent b9cc98b commit be4dd8f
Show file tree
Hide file tree
Showing 31 changed files with 193 additions and 194 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_plot_over_time_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_plot_over_time_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -85,24 +85,23 @@ Image Classification
Pipeline Random Config:
________________________________________
Configuration(values={
'image_augmenter:GaussianBlur:sigma_min': 2.128854080819082,
'image_augmenter:GaussianBlur:sigma_offset': 1.685286865327408,
'image_augmenter:GaussianBlur:use_augmenter': True,
'image_augmenter:GaussianNoise:use_augmenter': False,
'image_augmenter:GaussianBlur:use_augmenter': False,
'image_augmenter:GaussianNoise:sigma_offset': 2.016605350658349,
'image_augmenter:GaussianNoise:use_augmenter': True,
'image_augmenter:RandomAffine:use_augmenter': False,
'image_augmenter:RandomCutout:p': 0.8505129226214392,
'image_augmenter:RandomCutout:p': 0.7728298341875102,
'image_augmenter:RandomCutout:use_augmenter': True,
'image_augmenter:Resize:use_augmenter': False,
'image_augmenter:ZeroPadAndCrop:percent': 0.3503163793523587,
'normalizer:__choice__': 'NoNormalizer',
'image_augmenter:ZeroPadAndCrop:percent': 0.4990785598329858,
'normalizer:__choice__': 'ImageNormalizer',
})

Fitting the pipeline...
________________________________________
ImageClassificationPipeline
________________________________________
0-) normalizer:
NoNormalizer
ImageNormalizer

1-) preprocessing:
EarlyPreprocessing
Expand Down Expand Up @@ -174,7 +173,7 @@ Image Classification
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 6.887 seconds)
**Total running time of the script:** ( 0 minutes 8.510 seconds)


.. _sphx_glr_download_examples_20_basics_example_image_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e22bfd7f0>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444a4d0d90>
Expand Down Expand Up @@ -181,9 +181,9 @@ Print the final ensemble performance
Optimisation Metric: accuracy
Best validation score: 0.8713450292397661
Number of target algorithm runs: 23
Number of successful target algorithm runs: 21
Number of successful target algorithm runs: 20
Number of crashed target algorithm runs: 2
Number of target algorithms that exceeded the time limit: 0
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the memory limit: 0
Expand All @@ -193,7 +193,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 28.953 seconds)
**Total running time of the script:** ( 5 minutes 31.215 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f7ebdf86d90>
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f44e625f430>
Expand Down Expand Up @@ -167,12 +167,12 @@ Print the final ensemble performance
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
| 3 | None | LGBMLearner | 0.04 |
autoPyTorch results:
Dataset name: 4d60e332-964c-11ec-87e7-95e9f01c72a4
Dataset name: 6c9e9506-9a70-11ec-87d5-474e93987d34
Optimisation Metric: r2
Best validation score: 0.8670098636440993
Number of target algorithm runs: 27
Number of successful target algorithm runs: 25
Number of crashed target algorithm runs: 1
Number of target algorithm runs: 24
Number of successful target algorithm runs: 23
Number of crashed target algorithm runs: 0
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the memory limit: 0
Expand All @@ -183,7 +183,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 34.491 seconds)
**Total running time of the script:** ( 5 minutes 33.512 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@

Computation times
=================
**11:10.330** total execution time for **examples_20_basics** files:
**11:13.237** total execution time for **examples_20_basics** files:

+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:34.491 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:33.512 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:28.953 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:31.215 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:06.887 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:08.510 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e22069580>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4449514820>
Expand Down Expand Up @@ -194,24 +194,27 @@ Print the final ensemble performance

.. code-block:: none
{'accuracy': 0.8497109826589595}
{'accuracy': 0.838150289017341}
| | Preprocessing | Estimator | Weight |
|---:|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|---------:|
| 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.56 |
| 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,RobustScaler,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
| 2 | None | RFLearner | 0.08 |
| 3 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 5 | None | ETLearner | 0.04 |
| 6 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 7 | None | LGBMLearner | 0.02 |
| 8 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
| 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
| 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,RobustScaler,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
| 3 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
| 4 | None | RFLearner | 0.1 |
| 5 | None | SVMLearner | 0.1 |
| 6 | None | ETLearner | 0.06 |
| 7 | None | LGBMLearner | 0.04 |
| 8 | None | KNNLearner | 0.04 |
| 9 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 10 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 11 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
autoPyTorch results:
Dataset name: d0cbe6ed-964f-11ec-87e7-95e9f01c72a4
Dataset name: ebc28c6f-9a73-11ec-87d5-474e93987d34
Optimisation Metric: accuracy
Best validation score: 0.8596491228070176
Number of target algorithm runs: 18
Number of successful target algorithm runs: 16
Number of target algorithm runs: 17
Number of successful target algorithm runs: 15
Number of crashed target algorithm runs: 2
Number of target algorithms that exceeded the time limit: 0
Number of target algorithms that exceeded the memory limit: 0
Expand Down Expand Up @@ -272,7 +275,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e218d7b80>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444970b6d0>
Expand Down Expand Up @@ -315,13 +318,13 @@ Print the final ensemble performance
| 7 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 8 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
autoPyTorch results:
Dataset name: 3850871f-9650-11ec-87e7-95e9f01c72a4
Dataset name: 533c0306-9a74-11ec-87d5-474e93987d34
Optimisation Metric: accuracy
Best validation score: 0.8596491228070176
Number of target algorithm runs: 19
Number of target algorithm runs: 18
Number of successful target algorithm runs: 13
Number of crashed target algorithm runs: 5
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the time limit: 0
Number of target algorithms that exceeded the memory limit: 0
Expand All @@ -331,7 +334,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 39.929 seconds)
**Total running time of the script:** ( 5 minutes 46.242 seconds)


.. _sphx_glr_download_examples_40_advanced_example_custom_configuration_space.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,14 @@ with AutoPyTorch

.. code-block:: none
{'accuracy': 0.8786127167630058}
{'accuracy': 0.8670520231213873}
autoPyTorch results:
Dataset name: ec2cb869-964e-11ec-87e7-95e9f01c72a4
Dataset name: 0be6cebd-9a73-11ec-87d5-474e93987d34
Optimisation Metric: accuracy
Best validation score: 0.8713450292397661
Number of target algorithm runs: 50
Number of successful target algorithm runs: 38
Number of crashed target algorithm runs: 9
Number of target algorithm runs: 42
Number of successful target algorithm runs: 33
Number of crashed target algorithm runs: 6
Number of target algorithms that exceeded the time limit: 3
Number of target algorithms that exceeded the memory limit: 0
Expand Down Expand Up @@ -121,7 +121,7 @@ with AutoPyTorch
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 36.610 seconds)
**Total running time of the script:** ( 5 minutes 26.745 seconds)


.. _sphx_glr_download_examples_40_advanced_example_parallel_n_jobs.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,9 +89,9 @@ Task Definition

.. code-block:: none
[1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0
0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0]
[0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1
1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0]
Expand Down Expand Up @@ -121,7 +121,7 @@ API Instantiation and Searching
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e228dc4c0>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444956be50>
Expand Down Expand Up @@ -186,7 +186,7 @@ _, ax = plt.subplots() <=== You can feed it to post-process the figure.

.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 2 minutes 16.573 seconds)
**Total running time of the script:** ( 2 minutes 16.294 seconds)


.. _sphx_glr_download_examples_40_advanced_example_plot_over_time.py:
Expand Down
Loading

0 comments on commit be4dd8f

Please sign in to comment.