Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[feat] Add coalescer #376

Merged
merged 1 commit into from
Feb 9, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions autoPyTorch/configs/greedy_portfolio.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
[{"data_loader:batch_size": 60,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -30,6 +31,7 @@
"network_backbone:ShapedMLPBackbone:max_dropout": 0.023271935735825866},
{"data_loader:batch_size": 255,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -63,6 +65,7 @@
"network_backbone:ShapedResNetBackbone:max_dropout": 0.7662454727603789},
{"data_loader:batch_size": 165,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -93,6 +96,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 299,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -124,6 +128,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 183,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -157,6 +162,7 @@
"network_backbone:ShapedResNetBackbone:max_dropout": 0.27204101593048097},
{"data_loader:batch_size": 21,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -185,6 +191,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 159,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "TruncatedSVD",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -214,6 +221,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 442,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "TruncatedSVD",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -246,6 +254,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 140,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "TruncatedSVD",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -278,6 +287,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 48,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -305,6 +315,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 168,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -337,6 +348,7 @@
"network_backbone:ShapedResNetBackbone:max_dropout": 0.8992826006547855},
{"data_loader:batch_size": 21,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -365,6 +377,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 163,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -397,6 +410,7 @@
"network_backbone:ShapedResNetBackbone:max_dropout": 0.6341848343636569},
{"data_loader:batch_size": 150,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "NoFeaturePreprocessor",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -430,6 +444,7 @@
"network_backbone:ShapedResNetBackbone:max_dropout": 0.7133813761319248},
{"data_loader:batch_size": 151,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "TruncatedSVD",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down Expand Up @@ -459,6 +474,7 @@
"network_head:fully_connected:units_layer_1": 128},
{"data_loader:batch_size": 42,
"encoder:__choice__": "OneHotEncoder",
"coalescer:__choice__": "NoCoalescer",
"feature_preprocessor:__choice__": "TruncatedSVD",
"imputer:numerical_strategy": "mean",
"lr_scheduler:__choice__": "CosineAnnealingLR",
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
from typing import Any, Dict, Optional, Union

from ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace.hyperparameters import UniformFloatHyperparameter

import numpy as np

from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.coalescer.base_coalescer import BaseCoalescer
from autoPyTorch.utils.common import HyperparameterSearchSpace, add_hyperparameter
from autoPyTorch.utils.implementations import MinorityCoalesceTransformer


class MinorityCoalescer(BaseCoalescer):
"""Group together categories whose occurence is less than a specified min_frac """
def __init__(self, min_frac: float, random_state: np.random.RandomState):
super().__init__()
self.min_frac = min_frac
self.random_state = random_state

def fit(self, X: Dict[str, Any], y: Any = None) -> BaseCoalescer:
self.check_requirements(X, y)
self.preprocessor['categorical'] = MinorityCoalesceTransformer(min_frac=self.min_frac)
return self

@staticmethod
def get_hyperparameter_search_space(
dataset_properties: Optional[Dict[str, Any]] = None,
min_frac: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='min_frac',
value_range=(1e-4, 0.5),
default_value=1e-2,
),
) -> ConfigurationSpace:

cs = ConfigurationSpace()
add_hyperparameter(cs, min_frac, UniformFloatHyperparameter)
return cs

@staticmethod
def get_properties(dataset_properties: Optional[Dict[str, Any]] = None) -> Dict[str, Union[str, bool]]:
return {
'shortname': 'MinorityCoalescer',
'name': 'MinorityCoalescer',
'handles_sparse': False
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from typing import Any, Dict, Optional, Union

import numpy as np

from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.coalescer.base_coalescer import BaseCoalescer


class NoCoalescer(BaseCoalescer):
def __init__(self, random_state: np.random.RandomState):
super().__init__()
self.random_state = random_state
self._processing = False

def fit(self, X: Dict[str, Any], y: Optional[Any] = None) -> BaseCoalescer:
"""
As no coalescing happens, only check the requirements.

Args:
X (Dict[str, Any]):
fit dictionary
y (Optional[Any]):
Parameter to comply with scikit-learn API. Not used.

Returns:
instance of self
"""
self.check_requirements(X, y)

return self

@staticmethod
def get_properties(dataset_properties: Optional[Dict[str, Any]] = None) -> Dict[str, Union[str, bool]]:
return {
'shortname': 'NoCoalescer',
'name': 'NoCoalescer',
'handles_sparse': True
}
Loading