Skip to content
This repository has been archived by the owner on Sep 2, 2018. It is now read-only.

Registers exhausted with lots of pointer use #1

Closed
dylanmckay opened this issue Nov 26, 2014 · 11 comments
Closed

Registers exhausted with lots of pointer use #1

dylanmckay opened this issue Nov 26, 2014 · 11 comments

Comments

@dylanmckay
Copy link
Member

This bug description is what I can piece together from CalcSpillWeights.cpp and this email.

When compiling functions for AVR that contain much pointer use, the register allocator fail with the error ran out of registers. A hack is currently in place so that any function marked unspillable that has a lot of pointer access will be forced into being spillable.

The error message is as follows:

LLVM ERROR: ran out of registers during register allocation

Here is the code comment where the hack is implemented (in lib/CodeGen/CalcSpillWeights.cpp): It was commited in r247.

// HACK HACK: This is a workaround until PR14879 gets fixed!
// This code allows us to compile memory intensive functions when only the Z
// register is available, otherwise we get the "Ran out of registers ..."
// assertion inside the regalloc.
// Here we avoid marking as not spillable live intervals that use the
// PTRDISPREGS class and have a size greater than 8, smaller ones
// get filtered out, generating better code.

An old llvmdev mailing list thread discussing the hack can be found here, and continued here.

An LLVM bug is filed for the issue - see LLVM BugZilla bug 14879.

@dylanmckay dylanmckay added the bug label Nov 26, 2014
@dylanmckay
Copy link
Member Author

Reproduction code (from LLVM bug report 14879):

main.c:

struct ss
{
  int a;
  int b;
  int c;
};
void loop(struct ss *x, struct ss **y, int z)
{
  int i;
  for (i=0; i<z; ++i)
  {
    x->c += y[i]->b;
  }
}

Command line:

clang --target avr-none main.c -mcpu=avrxmega1

Or alternatively, in LLVM IR form:

main.ll:

target datalayout = "e-p:16:8:8-i8:8:8-i16:8:8-i32:8:8-i64:8:8-f32:8:8-f64:8:8-n8"
target triple = "avr-none"

%struct.ss = type { i16, i16, i16 }

; Function Attrs: nounwind
define void @loop(%struct.ss* %x, %struct.ss** %y, i16 %z) {
entry:
  %x.addr = alloca %struct.ss*, align 2
  %y.addr = alloca %struct.ss**, align 2
  %z.addr = alloca i16, align 2
  %i = alloca i16, align 2
  store %struct.ss* %x, %struct.ss** %x.addr, align 2
  store %struct.ss** %y, %struct.ss*** %y.addr, align 2
  store i16 %z, i16* %z.addr, align 2
  store i16 0, i16* %i, align 2
  br label %for.cond

for.cond:                                         ; preds = %for.inc, %entry
  %0 = load i16, i16* %i, align 2
  %1 = load i16, i16* %z.addr, align 2
  %cmp = icmp slt i16 %0, %1
  br i1 %cmp, label %for.body, label %for.end

for.body:                                         ; preds = %for.cond
  %2 = load i16, i16* %i, align 2
  %3 = load %struct.ss**, %struct.ss*** %y.addr, align 2
  %arrayidx = getelementptr inbounds %struct.ss*, %struct.ss** %3, i16 %2
  %4 = load %struct.ss*, %struct.ss** %arrayidx, align 2
  %b = getelementptr inbounds %struct.ss, %struct.ss* %4, i32 0, i32 1
  %5 = load i16, i16* %b, align 2
  %6 = load %struct.ss*, %struct.ss** %x.addr, align 2
  %c = getelementptr inbounds %struct.ss, %struct.ss* %6, i32 0, i32 2
  %7 = load i16, i16* %c, align 2
  %add = add nsw i16 %7, %5
  store i16 %add, i16* %c, align 2
  br label %for.inc

for.inc:                                          ; preds = %for.body
  %8 = load i16, i16* %i, align 2
  %inc = add nsw i16 %8, 1
  store i16 %inc, i16* %i, align 2
  br label %for.cond

for.end:                                          ; preds = %for.cond
  ret void
}

Command line:

llc -march=avr -mcpu=avrxmega1 main.ll

@dylanmckay dylanmckay changed the title Cannot compile functions with lots of pointer use Registers exhausted with lots of pointer use Apr 24, 2015
dylanmckay pushed a commit that referenced this issue Apr 24, 2015
The hack was in place as a fix for issue #1 (documented in AVR-LLVM) and
corresponds to LLVM bug PR14879. The hack is being removed so that a
better fix can be created.
@dylanmckay
Copy link
Member Author

I have removed the hack from the tree. A proper fix needs to be created.

@dylanmckay
Copy link
Member Author

The error is also triggered in the unit test test/CodeGen/AVR/dynalloca.ll and test/CodeGen/AVR/store.ll.

dylanmckay pushed a commit that referenced this issue Jun 4, 2015
in-register LUT technique.

Summary:
A description of this technique can be found here:
http://wm.ite.pl/articles/sse-popcount.html

The core of the idea is to use an in-register lookup table and the
PSHUFB instruction to compute the population count for the low and high
nibbles of each byte, and then to use horizontal sums to aggregate these
into vector population counts with wider element types.

On x86 there is an instruction that will directly compute the horizontal
sum for the low 8 and high 8 bytes, giving vNi64 popcount very easily.
Various tricks are used to get vNi32 and vNi16 from the vNi8 that the
LUT computes.

The base implemantion of this, and most of the work, was done by Bruno
in a follow up to D6531. See Bruno's detailed post there for lots of
timing information about these changes.

I have extended Bruno's patch in the following ways:

0) I committed the new tests with baseline sequences so this shows
   a diff, and regenerated the tests using the update scripts.

1) Bruno had noticed and mentioned in IRC a redundant mask that
   I removed.

2) I introduced a particular optimization for the i32 vector cases where
   we use PSHL + PSADBW to compute the the low i32 popcounts, and PSHUFD
   + PSADBW to compute doubled high i32 popcounts. This takes advantage
   of the fact that to line up the high i32 popcounts we have to shift
   them anyways, and we can shift them by one fewer bit to effectively
   divide the count by two. While the PSHUFD based horizontal add is no
   faster, it doesn't require registers or load traffic the way a mask
   would, and provides more ILP as it happens on different ports with
   high throughput.

3) I did some code cleanups throughout to simplify the implementation
   logic.

4) I refactored it to continue to use the parallel bitmath lowering when
   SSSE3 is not available to preserve the performance of that version on
   SSE2 targets where it is still much better than scalarizing as we'll
   still do a bitmath implementation of popcount even in scalar code
   there.

With #1 and #2 above, I analyzed the result in IACA for sandybridge,
ivybridge, and haswell. In every case I measured, the throughput is the
same or better using the LUT lowering, even v2i64 and v4i64, and even
compared with using the native popcnt instruction! The latency of the
LUT lowering is often higher than the latency of the scalarized popcnt
instruction sequence, but I think those latency measurements are deeply
misleading. Keeping the operation fully in the vector unit and having
many chances for increased throughput seems much more likely to win.

With this, we can lower every integer vector popcount implementation
using the LUT strategy if we have SSSE3 or better (and thus have
PSHUFB). I've updated the operation lowering to reflect this. This also
fixes an issue where we were scalarizing horribly some AVX lowerings.

Finally, there are some remaining cleanups. There is duplication between
the two techniques in how they perform the horizontal sum once the byte
population count is computed. I'm going to factor and merge those two in
a separate follow-up commit.

Differential Revision: http://reviews.llvm.org/D10084

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238636 91177308-0d34-0410-b5e6-96231b3b80d8
@dylanmckay
Copy link
Member Author

@agnat I removed part of the hack in 7f4cc26. Do you want to revert it and see where it gets us?

@agnat
Copy link

agnat commented Jun 16, 2015

Nah, no worries. Now that I know where the missing pieces are... ;)

@dylanmckay
Copy link
Member Author

I reapplied the hack in f07a0fd.

I'm fairly certain that the Y register preservation hack and the constrained register class hacks are separate entities.

dylanmckay pushed a commit that referenced this issue Jul 19, 2015
- Factor out code to query and modify the sign bit of a floatingpoint
  value as an integer. This also works if none of the targets integer
  types is big enough to hold all bits of the floatingpoint value.

- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
  otherwise perform bit manipulation on the sign bit. The previous code
  used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
  takes 34 instructions on ARM Cortex-M4. With this patch we only
  require 5:
    vldr d0, LCPI0_0
    vmov r2, r3, d0
    lsrs r2, r3, #31
    bfi r1, r2, #31, #1
    bx lr
  (This could be further improved if the compiler would recognize that
   r2, r3 is zero).

- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
  available otherwise perform bit manipulation on the sign bit.

- Perform the sign(x) test by masking out the sign bit and comparing
  with 0 rather than shifting the sign bit to the highest position and
  testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
    testl $32768, %eax
  rather than:
    shlq $48, %rax
    sets %al
    testb %al, %al

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242107 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Sep 30, 2015
In vectorized integer min/max reduction code, the final "reduce" step
is sub-optimal. In AArch64, this change wll combine :
  %svn0 = vector_shuffle %0, undef<2,3,u,u>
  %smax0 = smax %0, svn0
  %svn3 = vector_shuffle %smax0, undef<1,u,u,u>
  %sc = setcc %smax0, %svn3, gt
  %n0 = extract_vector_elt %sc, #0
  %n1 = extract_vector_elt %smax0, #0
  %n2 = extract_vector_elt $smax0, #1
  %result = select %n0, %n1, n2
becomes :
  %1 = smaxv %0
  %result = extract_vector_elt %1, 0

This change extends r246790.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247575 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Oct 23, 2015
In vectorized float min/max reduction code, the final "reduce" step
is sub-optimal. In AArch64, this change wll combine :

  svn0 = vector_shuffle t0, undef<2,3,u,u>
  fmin = fminnum t0,svn0
  svn1 = vector_shuffle fmin, undef<1,u,u,u>
  cc = setcc fmin, svn1, ole
  n0 = extract_vector_elt cc, #0
  n1 = extract_vector_elt fmin, #0
  n2 = extract_vector_elt fmin, #1
  result = select n0, n1,n2
into :
  result = llvm.aarch64.neon.fminnmv t0

This change extends r247575.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249834 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Oct 23, 2015
In vectorized float min/max reduction code, the final "reduce" step
is sub-optimal. In AArch64, this change wll combine :

  svn0 = vector_shuffle t0, undef<2,3,u,u>
  fmin = fminnum t0,svn0
  svn1 = vector_shuffle fmin, undef<1,u,u,u>
  cc = setcc fmin, svn1, ole
  n0 = extract_vector_elt cc, #0
  n1 = extract_vector_elt fmin, #0
  n2 = extract_vector_elt fmin, #1
  result = select n0, n1,n2
into :
  result = llvm.aarch64.neon.fminnmv t0

This change extends r247575.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249834 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Mar 3, 2016
Summary:
For instance, compiling the below results in a panic:

```
llc: ../lib/CodeGen/InlineSpiller.cpp:1140: bool (anonymous namespace)::InlineSpiller::foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned int> >, llvm::MachineInstr *): Assertion `MO->isDead() && "Cannot fold physreg def"' failed.
#0 0x00007f50fbcf353e llvm::sys::PrintStackTrace(llvm::raw_ostream&) /home/h/3rd/llvm/build/../lib/Support/Unix/Signals.inc:321:15
#1 0x00007f50fbcf3929 PrintStackTraceSignalHandler(void*) /home/h/3rd/llvm/build/../lib/Support/Unix/Signals.inc:380:1
#2 0x00007f50fbcf22a3 llvm::sys::RunSignalHandlers() /home/h/3rd/llvm/build/../lib/Support/Signals.cpp:45:5
#3 0x00007f50fbcf3bb4 SignalHandler(int) /home/h/3rd/llvm/build/../lib/Support/Unix/Signals.inc:210:1
#4 0x00007f50fa87a180 (/lib/x86_64-linux-gnu/libc.so.6+0x35180)
#5 0x00007f50fa87a107 gsignal (/lib/x86_64-linux-gnu/libc.so.6+0x35107)
#6 0x00007f50fa87b4e8 abort (/lib/x86_64-linux-gnu/libc.so.6+0x364e8)
#7 0x00007f50fa873226 (/lib/x86_64-linux-gnu/libc.so.6+0x2e226)
#8 0x00007f50fa8732d2 (/lib/x86_64-linux-gnu/libc.so.6+0x2e2d2)
#9 0x00007f50fddd9287 (anonymous namespace)::InlineSpiller::foldMemoryOperand(llvm::ArrayRef<std::pair<llvm::MachineInstr*, unsigned int> >, llvm::MachineInstr*) /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1141:21
#10 0x00007f50fddd9ee9 (anonymous namespace)::InlineSpiller::spillAroundUses(unsigned int) /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1286:9
#11 0x00007f50fddd388b (anonymous namespace)::InlineSpiller::spillAll() /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1338:21
#12 0x00007f50fddd221d (anonymous namespace)::InlineSpiller::spill(llvm::LiveRangeEdit&) /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1391:3
#13 0x00007f50fdfd921b (anonymous namespace)::RAGreedy::selectOrSplitImpl(llvm::LiveInterval&, llvm::SmallVectorImpl<unsigned int>&, llvm::SmallSet<unsigned int, 16u, std::less<unsigned int> >&, unsigned int) /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocGreedy.cpp:2555:5
#14 0x00007f50fdfd647b (anonymous namespace)::RAGreedy::selectOrSplit(llvm::LiveInterval&, llvm::SmallVectorImpl<unsigned int>&) /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocGreedy.cpp:2221:12
#15 0x00007f50fdfc89f9 llvm::RegAllocBase::allocatePhysRegs() /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocBase.cpp:110:14
#16 0x00007f50fdfd6337 (anonymous namespace)::RAGreedy::runOnMachineFunction(llvm::MachineFunction&) /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocGreedy.cpp:2611:3
#17 0x00007f50fded33ee llvm::MachineFunctionPass::runOnFunction(llvm::Function&) /home/h/3rd/llvm/build/../lib/CodeGen/MachineFunctionPass.cpp:43:3
#18 0x00007f50fd6cdc6f llvm::FPPassManager::runOnFunction(llvm::Function&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1550:23
#19 0x00007f50fd6cdf85 llvm::FPPassManager::runOnModule(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1571:16
#20 0x00007f50fd6ce71a (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1627:23
#21 0x00007f50fd6ce246 llvm::legacy::PassManagerImpl::run(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1730:16
#22 0x00007f50fd6cec31 llvm::legacy::PassManager::run(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1761:3
#23 0x0000000000415bdc compileModule(char**, llvm::LLVMContext&) /home/h/3rd/llvm/build/../tools/llc/llc.cpp:405:5
#24 0x0000000000414571 main /home/h/3rd/llvm/build/../tools/llc/llc.cpp:211:13
#25 0x00007f50fa866b45 __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b45)
#26 0x0000000000414296 _start (/home/h/3rd/llvm/build/bin/llc+0x414296)
Stack dump:
0.	Program arguments: ./bin/llc -mtriple msp430 loadstore.ll 
1.	Running pass 'Function Pass Manager' on module 'loadstore.ll'.
2.	Running pass 'Greedy Register Allocator' on function '@inc'
```

Original IR:

```llvm
%struct.VeryLarge = type { i8, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32 }

; Function Attrs: norecurse nounwind
define void @inc(%struct.VeryLarge* noalias nocapture sret %agg.result, %struct.VeryLarge* byval align 1 %s) #0 {
entry:
  %p0 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 0
  %0 = load i8, i8* %p0, align 1, !tbaa !1
  %p1 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 1
  %1 = load i32, i32* %p1, align 1, !tbaa !6
  %p2 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 2
  %2 = load i32, i32* %p2, align 1, !tbaa !7
  %p3 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 3
  %3 = load i32, i32* %p3, align 1, !tbaa !8
  %p4 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 4
  %4 = load i32, i32* %p4, align 1, !tbaa !9
  %p5 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 5
  %5 = load i32, i32* %p5, align 1, !tbaa !10
  %p6 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 6
  %6 = load i32, i32* %p6, align 1, !tbaa !11
  %p7 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 7
  %7 = load i32, i32* %p7, align 1, !tbaa !12
  %p8 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 8
  %8 = load i32, i32* %p8, align 1, !tbaa !13
  %p9 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 9
  %9 = load i32, i32* %p9, align 1, !tbaa !14
  %p10 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 10
  %10 = load i32, i32* %p10, align 1, !tbaa !15
  %p11 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 11
  %11 = load i32, i32* %p11, align 1, !tbaa !16
  %p12 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 12
  %12 = load i32, i32* %p12, align 1, !tbaa !17
  %p13 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 13
  %13 = load i32, i32* %p13, align 1, !tbaa !18
  %p14 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 14
  %14 = load i32, i32* %p14, align 1, !tbaa !19
  %p15 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 15
  %15 = load i32, i32* %p15, align 1, !tbaa !20
  %p16 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 16
  %16 = load i32, i32* %p16, align 1, !tbaa !21
  %p17 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 17
  %17 = load i32, i32* %p17, align 1, !tbaa !22
  %p18 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 18
  %18 = load i32, i32* %p18, align 1, !tbaa !23
  %p19 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 19
  %19 = load i32, i32* %p19, align 1, !tbaa !24
  %p20 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 20
  %20 = load i32, i32* %p20, align 1, !tbaa !25
  %p21 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 21
  %21 = load i32, i32* %p21, align 1, !tbaa !26
  %p22 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 22
  %22 = load i32, i32* %p22, align 1, !tbaa !27
  %p23 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 23
  %23 = load i32, i32* %p23, align 1, !tbaa !28
  %p24 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 24
  %24 = load i32, i32* %p24, align 1, !tbaa !29
  %p25 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 25
  %25 = load i32, i32* %p25, align 1, !tbaa !30
  %p26 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 26
  %26 = load i32, i32* %p26, align 1, !tbaa !31
  %p27 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 27
  %27 = load i32, i32* %p27, align 1, !tbaa !32
  %p28 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 28
  %28 = load i32, i32* %p28, align 1, !tbaa !33
  %p29 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 29
  %29 = load i32, i32* %p29, align 1, !tbaa !34
  %p30 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 30
  %30 = load i32, i32* %p30, align 1, !tbaa !35
  %p31 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 31
  %31 = load i32, i32* %p31, align 1, !tbaa !36
  %p32 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 32
  %32 = load i32, i32* %p32, align 1, !tbaa !37
  %add = add i8 %0, 1
  store i8 %add, i8* %p0, align 1, !tbaa !1
  %add2 = add i32 %1, 2
  store i32 %add2, i32* %p1, align 1, !tbaa !6
  %add3 = add i32 %2, 3
  store i32 %add3, i32* %p2, align 1, !tbaa !7
  %add4 = add i32 %3, 4
  store i32 %add4, i32* %p3, align 1, !tbaa !8
  %add5 = add i32 %4, 5
  store i32 %add5, i32* %p4, align 1, !tbaa !9
  %add6 = add i32 %5, 6
  store i32 %add6, i32* %p5, align 1, !tbaa !10
  %add7 = add i32 %6, 7
  store i32 %add7, i32* %p6, align 1, !tbaa !11
  %add8 = add i32 %7, 8
  store i32 %add8, i32* %p7, align 1, !tbaa !12
  %add9 = add i32 %8, 9
  store i32 %add9, i32* %p8, align 1, !tbaa !13
  %add10 = add i32 %9, 10
  store i32 %add10, i32* %p9, align 1, !tbaa !14
  %add11 = add i32 %10, 11
  store i32 %add11, i32* %p10, align 1, !tbaa !15
  %add12 = add i32 %11, 12
  store i32 %add12, i32* %p11, align 1, !tbaa !16
  %add13 = add i32 %12, 13
  store i32 %add13, i32* %p12, align 1, !tbaa !17
  %add14 = add i32 %13, 14
  store i32 %add14, i32* %p13, align 1, !tbaa !18
  %add15 = add i32 %14, 15
  store i32 %add15, i32* %p14, align 1, !tbaa !19
  %add16 = add i32 %15, 16
  store i32 %add16, i32* %p15, align 1, !tbaa !20
  %add17 = add i32 %16, 17
  store i32 %add17, i32* %p16, align 1, !tbaa !21
  %add18 = add i32 %17, 18
  store i32 %add18, i32* %p17, align 1, !tbaa !22
  %add19 = add i32 %18, 19
  store i32 %add19, i32* %p18, align 1, !tbaa !23
  %add20 = add i32 %19, 20
  store i32 %add20, i32* %p19, align 1, !tbaa !24
  %add21 = add i32 %20, 21
  store i32 %add21, i32* %p20, align 1, !tbaa !25
  %add22 = add i32 %21, 22
  store i32 %add22, i32* %p21, align 1, !tbaa !26
  %add23 = add i32 %22, 23
  store i32 %add23, i32* %p22, align 1, !tbaa !27
  %add24 = add i32 %23, 24
  store i32 %add24, i32* %p23, align 1, !tbaa !28
  %add25 = add i32 %24, 25
  store i32 %add25, i32* %p24, align 1, !tbaa !29
  %add26 = add i32 %25, 26
  store i32 %add26, i32* %p25, align 1, !tbaa !30
  %add27 = add i32 %26, 27
  store i32 %add27, i32* %p26, align 1, !tbaa !31
  %add28 = add i32 %27, 28
  store i32 %add28, i32* %p27, align 1, !tbaa !32
  %add29 = add i32 %28, 29
  store i32 %add29, i32* %p28, align 1, !tbaa !33
  %add30 = add i32 %29, 30
  store i32 %add30, i32* %p29, align 1, !tbaa !34
  %add31 = add i32 %30, 31
  store i32 %add31, i32* %p30, align 1, !tbaa !35
  %add32 = add i32 %31, 32
  store i32 %add32, i32* %p31, align 1, !tbaa !36
  %add33 = add i32 %32, 33
  store i32 %add33, i32* %p32, align 1, !tbaa !37
  %33 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %agg.result, i32 0, i32 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %33, i8* %p0, i32 129, i32 1, i1 false), !tbaa.struct !38
  ret void
}

; Function Attrs: argmemonly nounwind
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture readonly, i32, i32, i1) #1

attributes #0 = { norecurse nounwind "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { argmemonly nounwind }

!llvm.ident = !{!0}

!0 = !{!"clang version 3.8.0 (git://github.com/llvm-mirror/clang 40ef2b7531472c41212c4719a9294aeb7bddebbc) (git://github.com/llvm-mirror/llvm c601eaf55606dfb9ad372b514b77aa00d1409be1)"}
!1 = !{!2, !3, i64 0}
!2 = !{!"", !3, i64 0, !5, i64 1, !5, i64 5, !5, i64 9, !5, i64 13, !5, i64 17, !5, i64 21, !5, i64 25, !5, i64 29, !5, i64 33, !5, i64 37, !5, i64 41, !5, i64 45, !5, i64 49, !5, i64 53, !5, i64 57, !5, i64 61, !5, i64 65, !5, i64 69, !5, i64 73, !5, i64 77, !5, i64 81, !5, i64 85, !5, i64 89, !5, i64 93, !5, i64 97, !5, i64 101, !5, i64 105, !5, i64 109, !5, i64 113, !5, i64 117, !5, i64 121, !5, i64 125}
!3 = !{!"omnipotent char", !4, i64 0}
!4 = !{!"Simple C/C++ TBAA"}
!5 = !{!"int", !3, i64 0}
!6 = !{!2, !5, i64 1}
!7 = !{!2, !5, i64 5}
!8 = !{!2, !5, i64 9}
!9 = !{!2, !5, i64 13}
!10 = !{!2, !5, i64 17}
!11 = !{!2, !5, i64 21}
!12 = !{!2, !5, i64 25}
!13 = !{!2, !5, i64 29}
!14 = !{!2, !5, i64 33}
!15 = !{!2, !5, i64 37}
!16 = !{!2, !5, i64 41}
!17 = !{!2, !5, i64 45}
!18 = !{!2, !5, i64 49}
!19 = !{!2, !5, i64 53}
!20 = !{!2, !5, i64 57}
!21 = !{!2, !5, i64 61}
!22 = !{!2, !5, i64 65}
!23 = !{!2, !5, i64 69}
!24 = !{!2, !5, i64 73}
!25 = !{!2, !5, i64 77}
!26 = !{!2, !5, i64 81}
!27 = !{!2, !5, i64 85}
!28 = !{!2, !5, i64 89}
!29 = !{!2, !5, i64 93}
!30 = !{!2, !5, i64 97}
!31 = !{!2, !5, i64 101}
!32 = !{!2, !5, i64 105}
!33 = !{!2, !5, i64 109}
!34 = !{!2, !5, i64 113}
!35 = !{!2, !5, i64 117}
!36 = !{!2, !5, i64 121}
!37 = !{!2, !5, i64 125}
!38 = !{i64 0, i64 1, !39, i64 1, i64 4, !40, i64 5, i64 4, !40, i64 9, i64 4, !40, i64 13, i64 4, !40, i64 17, i64 4, !40, i64 21, i64 4, !40, i64 25, i64 4, !40, i64 29, i64 4, !40, i64 33, i64 4, !40, i64 37, i64 4, !40, i64 41, i64 4, !40, i64 45, i64 4, !40, i64 49, i64 4, !40, i64 53, i64 4, !40, i64 57, i64 4, !40, i64 61, i64 4, !40, i64 65, i64 4, !40, i64 69, i64 4, !40, i64 73, i64 4, !40, i64 77, i64 4, !40, i64 81, i64 4, !40, i64 85, i64 4, !40, i64 89, i64 4, !40, i64 93, i64 4, !40, i64 97, i64 4, !40, i64 101, i64 4, !40, i64 105, i64 4, !40, i64 109, i64 4, !40, i64 113, i64 4, !40, i64 117, i64 4, !40, i64 121, i64 4, !40, i64 125, i64 4, !40}
!39 = !{!3, !3, i64 0}
!40 = !{!5, !5, i64 0}
```



Reviewers: asl

Subscribers: qcolombet

Differential Revision: http://reviews.llvm.org/D17441

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261746 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue May 7, 2016
Summary: This reverts commit d88cc08.

#0 0xfed467 in llvm::ARMFrameLowering::determineCalleeSaves(llvm::MachineFunction&, llvm::BitVector&, llvm::RegScavenger*) const /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/Target/ARM/ARMFrameLowering.cpp:1625:52
#1 0x330d4cc in (anonymous namespace)::PEI::runOnMachineFunction(llvm::MachineFunction&) /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/CodeGen/PrologEpilogInserter.cpp:186:3
#2 0x3193e12 in llvm::MachineFunctionPass::runOnFunction(llvm::Function&) /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/CodeGen/MachineFunctionPass.cpp:60:13
#3 0x396237d in llvm::FPPassManager::runOnFunction(llvm::Function&) /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/IR/LegacyPassManager.cpp:1526:23
#4 0x3962a23 in llvm::FPPassManager::runOnModule(llvm::Module&) /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/IR/LegacyPassManager.cpp:1547:16
#5 0x3963d52 in runOnModule /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/IR/LegacyPassManager.cpp:1603:23
#6 0x3963d52 in llvm::legacy::PassManagerImpl::run(llvm::Module&) /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/lib/IR/LegacyPassManager.cpp:1706
#7 0x6bb910 in compileModule(char**, llvm::LLVMContext&) /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/tools/llc/llc.cpp:412:5
#8 0x6b3c25 in main /mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm/tools/llc/llc.cpp:218:22
#9 0x7fd4a7d37ec4 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21ec4)
#10 0x625c93 in _start (/mnt/b/sanitizer-buildbot2/sanitizer-x86_64-linux-bootstrap/build/llvm_build_msan/bin/llc+0x625c93)

Reviewers:

Subscribers:

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268536 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Sep 15, 2016
This test code previously caused a failure in the module verifier,
because SimplifyCFG created this invalid instruction, which tries to
take the address of inline asm:
  %.sink = select i1 %1, i64 ()* asm "mov $0, #1", "=r", i64 ()* asm %"mov $0, #2", "=r"

This has been fixed recently, presumably by James Molloy's patches that
re-wrote and changed parts of SimplifyCFG, so this patch just adds a
regression test for it.

Differential Revision: https://reviews.llvm.org/D24231



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280660 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Sep 29, 2016
@dylanmckay
Copy link
Member Author

Added a test for this locally

b705c4b

@dylanmckay
Copy link
Member Author

I think this is triggered by this isSpillable() check in RegAllocGreedy.cpp. When I remove the check, the file compiles successfully.

This makes sense, because the existing hacky workaround works by explicitly marking all small live intervals as spillable, even if they were previously marked unspillable.

RegAllocGreedy.cpp

Looking at the generated assembly, we are infact spilling a pointer register when I remove the check. The comment on the original BugZilla mentions that it should be perfectly possible to avoid spilling by simply copying the PTRREG to one of the many DREGS. The problem is likely that LLVM sees that there are no free PTRREGS to copy to, and doesn't take into account we can save/restore to another register class.

This makes sense, because in most backends that LLVM supports, there isn't much overlap between register classes.

The best fix may be to simple support saving/restoring to alternative register classes where possible.

@dylanmckay
Copy link
Member Author

dylanmckay commented Sep 29, 2016

I have a fix pending the test suite which attempts to fix this by attempting to spill live intervals before bailing out like what we do currently (PR #224)

@dylanmckay
Copy link
Member Author

I have merged the fix. Once reviews.llvm.org comes back online, I'll upstream the fix.

@dylanmckay
Copy link
Member Author

Fix merged upstream in r283838

dylanmckay pushed a commit that referenced this issue Oct 27, 2016
…ump tables

The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.

It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.

TBB example:
Before: lsls r0, r0, #2    After: add  r0, pc
        adr  r1, .LJTI0_0         ldrb r0, [r0, #6]
        ldr  r0, [r0, r1]         lsls r0, r0, #1
        mov  pc, r0               add  pc, r0
  => No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.

The only case that can increase dynamic instruction count is the TBH case:

Before: lsls r0, r4, #2    After: lsls r4, r4, #1
        adr  r1, .LJTI0_0         add  r4, pc
        ldr  r0, [r0, r1]         ldrh r4, [r4, #6]
        mov  pc, r0               lsls r4, r4, #1
                                  add  pc, r4
  => 1 more instruction in prologue. Jump table shrunk by a factor of 2.

So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284580 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Oct 27, 2016
…tions.

Instead of

 cmp w0, #1
 orr w8, wzr, #0x1
 cneg w0, w8, ne

we now generate

 cmp w0, #1
 csinv w0, w0, wzr, eq

PR28965

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285217 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Oct 27, 2016
…ump tables

The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.

It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.

TBB example:
Before: lsls r0, r0, #2    After: add  r0, pc
        adr  r1, .LJTI0_0         ldrb r0, [r0, #6]
        ldr  r0, [r0, r1]         lsls r0, r0, #1
        mov  pc, r0               add  pc, r0
  => No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.

The only case that can increase dynamic instruction count is the TBH case:

Before: lsls r0, r4, #2    After: lsls r4, r4, #1
        adr  r1, .LJTI0_0         add  r4, pc
        ldr  r0, [r0, r1]         ldrh r4, [r4, #6]
        mov  pc, r0               lsls r4, r4, #1
                                  add  pc, r4
  => 1 more instruction in prologue. Jump table shrunk by a factor of 2.

So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284580 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Oct 27, 2016
…tions.

Instead of

 cmp w0, #1
 orr w8, wzr, #0x1
 cneg w0, w8, ne

we now generate

 cmp w0, #1
 csinv w0, w0, wzr, eq

PR28965

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285217 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Nov 7, 2016
…ump tables

[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]

The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.

It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.

TBB example:
Before: lsls r0, r0, #2    After: add  r0, pc
        adr  r1, .LJTI0_0         ldrb r0, [r0, #6]
        ldr  r0, [r0, r1]         lsls r0, r0, #1
        mov  pc, r0               add  pc, r0
  => No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.

The only case that can increase dynamic instruction count is the TBH case:

Before: lsls r0, r4, #2    After: lsls r4, r4, #1
        adr  r1, .LJTI0_0         add  r4, pc
        ldr  r0, [r0, r1]         ldrh r4, [r4, #6]
        mov  pc, r0               lsls r4, r4, #1
                                  add  pc, r4
  => 1 more instruction in prologue. Jump table shrunk by a factor of 2.

So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285690 91177308-0d34-0410-b5e6-96231b3b80d8
dylanmckay pushed a commit that referenced this issue Nov 12, 2016
…line asm register selection on AArch64.

Without this patch, register allocation for the example below fails.

define half @test(half %a1, half %a2) #0 {
entry:
  %0 = tail call half asm "sqrshl ${0:h}, ${1:h}, ${2:h}", "=w,w,w" (half %a1, half %a2) #1
  ret half %0
}

Patch by Florian Hahn.

Differential Revision: https://reviews.llvm.org/D25080



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286111 91177308-0d34-0410-b5e6-96231b3b80d8
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Projects
None yet
Development

No branches or pull requests

2 participants