Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CustomAggregator #572

Merged
merged 7 commits into from
Jul 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 69 additions & 0 deletions src/main/scala/com/amazon/deequ/analyzers/CustomAggregator.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/**
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*/
package com.amazon.deequ.analyzers

import com.amazon.deequ.metrics.AttributeDoubleMetric
import com.amazon.deequ.metrics.Entity
import org.apache.spark.sql.DataFrame

import scala.util.Failure
import scala.util.Success
import scala.util.Try

// Define a custom state to hold aggregation results
case class AggregatedMetricState(counts: Map[String, Int], total: Int)
extends DoubleValuedState[AggregatedMetricState] {

override def sum(other: AggregatedMetricState): AggregatedMetricState = {
val combinedCounts = counts ++ other
.counts
.map { case (k, v) => k -> (v + counts.getOrElse(k, 0)) }
AggregatedMetricState(combinedCounts, total + other.total)
}

override def metricValue(): Double = counts.values.sum.toDouble / total
}

// Define the analyzer
case class CustomAggregator(aggregatorFunc: DataFrame => AggregatedMetricState,
metricName: String,
instance: String = "Dataset")
extends Analyzer[AggregatedMetricState, AttributeDoubleMetric] {

override def computeStateFrom(data: DataFrame, filterCondition: Option[String] = None)
: Option[AggregatedMetricState] = {
Try(aggregatorFunc(data)) match {
case Success(state) => Some(state)
case Failure(_) => None
}
}

override def computeMetricFrom(state: Option[AggregatedMetricState]): AttributeDoubleMetric = {
state match {
case Some(detState) =>
val metrics = detState.counts.map { case (key, count) =>
key -> (count.toDouble / detState.total)
}
AttributeDoubleMetric(Entity.Column, metricName, instance, Success(metrics))
case None =>
AttributeDoubleMetric(Entity.Column, metricName, instance,
Failure(new RuntimeException("Metric computation failed")))
}
}

override private[deequ] def toFailureMetric(failure: Exception): AttributeDoubleMetric = {
AttributeDoubleMetric(Entity.Column, metricName, instance, Failure(failure))
}
}
17 changes: 17 additions & 0 deletions src/main/scala/com/amazon/deequ/metrics/Metric.scala
Original file line number Diff line number Diff line change
Expand Up @@ -89,3 +89,20 @@ case class KeyedDoubleMetric(
}
}
}

case class AttributeDoubleMetric(
entity: Entity.Value,
name: String,
instance: String,
value: Try[Map[String, Double]])
extends Metric[Map[String, Double]] {

override def flatten(): Seq[DoubleMetric] = {
value match {
case Success(valuesMap) => valuesMap.map { case (key, metricValue) =>
DoubleMetric(entity, s"$name.$key", instance, Success(metricValue))
}.toSeq
case Failure(ex) => Seq(DoubleMetric(entity, name, instance, Failure(ex)))
}
}
}
244 changes: 244 additions & 0 deletions src/test/scala/com/amazon/deequ/analyzers/CustomAggregatorTest.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
/**
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*/
package com.amazon.deequ.analyzers

import com.amazon.deequ.SparkContextSpec
import com.amazon.deequ.utils.FixtureSupport
import org.scalatest.matchers.should.Matchers
import org.scalatest.wordspec.AnyWordSpec
import com.amazon.deequ.analyzers._
import com.amazon.deequ.metrics.AttributeDoubleMetric
import com.amazon.deequ.profiles.ColumnProfilerRunner
import com.amazon.deequ.utils.FixtureSupport
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{sum, count}
import scala.util.Failure
import scala.util.Success
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.DataFrame
import com.amazon.deequ.metrics.AttributeDoubleMetric
import com.amazon.deequ.profiles.NumericColumnProfile

class CustomAggregatorTest
extends AnyWordSpec with Matchers with SparkContextSpec with FixtureSupport {

"CustomAggregatorTest" should {

"""Example use: return correct counts
|for product sales in different categories""".stripMargin in withSparkSession
{ session =>
val data = getDfWithIdColumn(session)
val mockLambda: DataFrame => AggregatedMetricState = _ =>
AggregatedMetricState(Map("ProductA" -> 50, "ProductB" -> 45), 100)

val analyzer = CustomAggregator(mockLambda, "ProductSales", "category")

val state = analyzer.computeStateFrom(data)
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
metric.value.get should contain ("ProductA" -> 0.5)
metric.value.get should contain ("ProductB" -> 0.45)
}

"handle scenarios with no data points effectively" in withSparkSession { session =>
val data = getDfWithIdColumn(session)
val mockLambda: DataFrame => AggregatedMetricState = _ =>
AggregatedMetricState(Map.empty[String, Int], 100)

val analyzer = CustomAggregator(mockLambda, "WebsiteTraffic", "page")

val state = analyzer.computeStateFrom(data)
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
metric.value.get shouldBe empty
}

"return a failure metric when the lambda function fails" in withSparkSession { session =>
val data = getDfWithIdColumn(session)
val failingLambda: DataFrame => AggregatedMetricState =
_ => throw new RuntimeException("Test failure")

val analyzer = CustomAggregator(failingLambda, "ProductSales", "category")

val state = analyzer.computeStateFrom(data)
val metric = analyzer.computeMetricFrom(state)

metric.value.isFailure shouldBe true
metric.value match {
case Success(_) => fail("Should have failed due to lambda function failure")
case Failure(exception) => exception.getMessage shouldBe "Metric computation failed"
}
}

"return a failure metric if there are no rows in DataFrame" in withSparkSession { session =>
val emptyData = session.createDataFrame(
session.sparkContext.emptyRDD[org.apache.spark.sql.Row],
getDfWithIdColumn(session).schema)
val mockLambda: DataFrame => AggregatedMetricState = df =>
if (df.isEmpty) throw new RuntimeException("No data to analyze")
else AggregatedMetricState(Map("ProductA" -> 0, "ProductB" -> 0), 0)

val analyzer = CustomAggregator(mockLambda,
"ProductSales",
"category")

val state = analyzer.computeStateFrom(emptyData)
val metric = analyzer.computeMetricFrom(state)

metric.value.isFailure shouldBe true
metric.value match {
case Success(_) => fail("Should have failed due to no data")
case Failure(exception) => exception.getMessage should include("Metric computation failed")
}
}
}

"Combined Analysis with CustomAggregator and ColumnProfilerRunner" should {
"provide aggregated data and column profiles" in withSparkSession { session =>
import session.implicits._

// Define the dataset
val rawData = Seq(
("thingA", "13.0", "IN_TRANSIT", "true"),
("thingA", "5", "DELAYED", "false"),
("thingB", null, "DELAYED", null),
("thingC", null, "IN_TRANSIT", "false"),
("thingD", "1.0", "DELAYED", "true"),
("thingC", "7.0", "UNKNOWN", null),
("thingC", "20", "UNKNOWN", null),
("thingE", "20", "DELAYED", "false")
).toDF("productName", "totalNumber", "status", "valuable")

val statusCountLambda: DataFrame => AggregatedMetricState = df =>
AggregatedMetricState(df.groupBy("status").count().rdd
.map(r => r.getString(0) -> r.getLong(1).toInt).collect().toMap, df.count().toInt)

val statusAnalyzer = CustomAggregator(statusCountLambda, "ProductStatus")
val statusMetric = statusAnalyzer.computeMetricFrom(statusAnalyzer.computeStateFrom(rawData))

val result = ColumnProfilerRunner().onData(rawData).run()

statusMetric.value.isSuccess shouldBe true
statusMetric.value.get("IN_TRANSIT") shouldBe 0.25
statusMetric.value.get("DELAYED") shouldBe 0.5

val totalNumberProfile = result.profiles("totalNumber").asInstanceOf[NumericColumnProfile]
totalNumberProfile.completeness shouldBe 0.75
totalNumberProfile.dataType shouldBe DataTypeInstances.Fractional

result.profiles.foreach { case (colName, profile) =>
println(s"Column '$colName': completeness: ${profile.completeness}, " +
s"approximate number of distinct values: ${profile.approximateNumDistinctValues}")
}
}
}

"accurately compute percentage occurrences and total engagements for content types" in withSparkSession { session =>
val data = getContentEngagementDataFrame(session)
val contentEngagementLambda: DataFrame => AggregatedMetricState = df => {

// Calculate the total engagements for each content type
val counts = df
.groupBy("content_type")
.agg(
(sum("views") + sum("likes") + sum("shares")).cast("int").alias("totalEngagements")
)
.collect()
.map(row =>
row.getString(0) -> row.getInt(1)
)
.toMap
val totalEngagements = counts.values.sum
AggregatedMetricState(counts, totalEngagements)
}

val analyzer = CustomAggregator(contentEngagementLambda, "ContentEngagement", "AllTypes")

val state = analyzer.computeStateFrom(data)
val metric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
// Counts: Map(Video -> 5300, Article -> 1170)
// total engagement: 6470
(metric.value.get("Video") * 100).toInt shouldBe 81
(metric.value.get("Article") * 100).toInt shouldBe 18
println(metric.value.get)
}

"accurately compute total aggregated resources for cloud services" in withSparkSession { session =>
val data = getResourceUtilizationDataFrame(session)
val resourceUtilizationLambda: DataFrame => AggregatedMetricState = df => {
val counts = df.groupBy("service_type")
.agg(
(sum("cpu_hours") + sum("memory_gbs") + sum("storage_gbs")).cast("int").alias("totalResources")
)
.collect()
.map(row =>
row.getString(0) -> row.getInt(1)
)
.toMap
val totalResources = counts.values.sum
AggregatedMetricState(counts, totalResources)
}
val analyzer = CustomAggregator(resourceUtilizationLambda, "ResourceUtilization", "CloudServices")

val state = analyzer.computeStateFrom(data)
val metric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
println("Resource Utilization Metrics: " + metric.value.get)
// Resource Utilization Metrics: Map(Compute -> 0.5076142131979695,
// Database -> 0.27918781725888325,
// Storage -> 0.2131979695431472)
(metric.value.get("Compute") * 100).toInt shouldBe 50 // Expected percentage for Compute
(metric.value.get("Database") * 100).toInt shouldBe 27 // Expected percentage for Database
(metric.value.get("Storage") * 100).toInt shouldBe 21 // 430 CPU + 175 Memory + 140 Storage from mock data
}

def getDfWithIdColumn(session: SparkSession): DataFrame = {
import session.implicits._
Seq(
("ProductA", "North"),
("ProductA", "South"),
("ProductB", "East"),
("ProductA", "West")
).toDF("product", "region")
}

def getContentEngagementDataFrame(session: SparkSession): DataFrame = {
import session.implicits._
Seq(
("Video", 1000, 150, 300),
("Article", 500, 100, 150),
("Video", 1500, 200, 450),
("Article", 300, 50, 70),
("Video", 1200, 180, 320)
).toDF("content_type", "views", "likes", "shares")
}

def getResourceUtilizationDataFrame(session: SparkSession): DataFrame = {
import session.implicits._
Seq(
("Compute", 400, 120, 150),
("Storage", 100, 30, 500),
("Database", 200, 80, 100),
("Compute", 450, 130, 250),
("Database", 230, 95, 120)
).toDF("service_type", "cpu_hours", "memory_gbs", "storage_gbs")
}
}
Loading