NDTGuide
is a Python package that aims to provide easy to use quick access to MeasurementLab's (MLab)
NDT measurement data on Google BigQuery. NDTGuide
provides an abstract layer around the Google BigQuery interface and
MLab's data schema. At its core, it provides a growing number of functions that translate user intentions
into BigQuery SQL statements.
This library is intended to work only on Google Colab platform.
The full example code of this usage guide is available here.
Execute the following code block at the very beginning of your Google Colab script to install and import the package.
!pip install ndtguide==0.1.1
from ndtguide import NDTGuide
Since the MLab's data access is tied to individual Google accounts, it is required to first
login to Google first when first running the script. NDTGuide
provided a wrapper .login()
function that interactively prompt user to login.
guide = NDTGuide()
guide.login()
One of the most used queries is to pull out daily aggregated statistics of the measurement data
to gather some overview of certain clients/servers/regions. NDTGuide
provides the .sql_daily_aggregate(...)
function to generate sql statements for this task.
It accepts the following required parameters:
table_name
: currently supportsndt7
orndt5
date_start
anddate_end
: start and end date, in the format ofYYYY-mm-dd
aggr_func
: aggregation function, currently supportsavg
,max
,min
Additional filters for NDT clients and servers include:
client_asn
andserver_asn
: autonomous number of the client/serverclient_cidr
andserver_cidr
: IP block (CIDR) of the client/serverclient_country
andserver_country
: two-letter country code of the client/server
The query should return results of the following data:
- mean throughput
- minimum RTT
- packet loss rate
The following example queries the average measurements from ndt7
table between 2022-02-01
to
2022-02-10
for clients located in Ukraine.
sql = guide.sql_daily_aggregate("ndt7", "2022-02-01", "2022-02-10", "avg", client_country="ua")
guide.exec_sql(sql)
| | avg_throughput | avg_rtt | avg_lossrate | date |
| 0 | 49.453097 | 52.033121 | 0.042338 | 2022-02-01 |
| 1 | 50.410214 | 53.451678 | 0.051775 | 2022-02-02 |
| 2 | 52.047963 | 52.372124 | 0.043772 | 2022-02-03 |
| 3 | 54.767157 | 55.180171 | 0.041808 | 2022-02-04 |
| 4 | 47.897135 | 58.383362 | 0.029880 | 2022-02-05 |
| 5 | 75.044735 | 59.411379 | 0.041825 | 2022-02-06 |
| 6 | 91.473595 | 49.754529 | 0.048684 | 2022-02-07 |
| 7 | 58.433473 | 48.761221 | 0.041670 | 2022-02-08 |
| 8 | 105.985296 | 56.598006 | 0.034676 | 2022-02-09 |
| 9 | 64.017782 | 57.256041 | 0.045156 | 2022-02-10 |
NDTGuide
provides function to generate queries look for
- clients that users servers in certain network
- servers that the clients in certain network uses
These functions allow users to quickly locate relevant clients/servers for any interested networks.
For example, the following query gathers all the NDT servers any clients from AS3216 used during a one week period:
sql = guide.sql_get_servers("ndt7", "2022-01-01", "2022-01-07", "3216")
print(sql)
df = guide.exec_sql(sql)
df
SELECT distinct server.Site, server.Machine, server.Network.ASNumber, server.Network.ASName, server.Network.CIDR, server.Geo.CountryCode, server.Geo.City
FROM `measurement-lab.ndt.ndt7`
WHERE date>='2022-01-01' and date<='2022-01-07' and client.Network.ASNumber=3216
| | Site | Machine | ASNumber | ASName | CIDR | CountryCode | City |
|----+-------+---------+----------+-----------------------------------+--------------------+-------------+-----------|
| 0 | beg01 | mlab1 | 13004 | Serbian Open Exchange DOO | 188.120.127.0/26 | RS | Belgrade |
| 1 | arn03 | mlab1 | 3356 | Level 3 Parent, LLC | 213.242.86.64/26 | SE | Stockholm |
| 2 | beg01 | mlab2 | 13004 | Serbian Open Exchange DOO | 188.120.127.0/26 | RS | Belgrade |
| 3 | arn04 | mlab2 | 1299 | Telia Company AB | 62.115.225.128/26 | SE | Stockholm |
| 4 | arn05 | mlab3 | 3257 | GTT Communications Inc. | 77.67.119.64/26 | SE | Stockholm |
| 5 | arn03 | mlab2 | 3356 | Level 3 Parent, LLC | 213.242.86.64/26 | SE | Stockholm |
| 6 | beg01 | mlab3 | 13004 | Serbian Open Exchange DOO | 188.120.127.0/26 | RS | Belgrade |
| 7 | arn02 | mlab3 | 1273 | Vodafone Group PLC | 195.89.146.192/26 | SE | Stockholm |
| 8 | hnd02 | mlab1 | 2518 | BIGLOBE Inc. | 210.151.179.128/26 | JP | Tokyo |
| 9 | arn06 | mlab3 | 6453 | TATA COMMUNICATIONS (AMERICA) INC | 193.142.125.64/26 | SE | Stockholm |
| 10 | arn04 | mlab1 | 1299 | Telia Company AB | 62.115.225.128/26 | SE | Stockholm |
| 11 | arn06 | mlab2 | 6453 | TATA COMMUNICATIONS (AMERICA) INC | 193.142.125.64/26 | SE | Stockholm |
| 12 | arn04 | mlab3 | 1299 | Telia Company AB | 62.115.225.128/26 | SE | Stockholm |
| 13 | hnd04 | mlab1 | 5580 | GTT Netherlands B.V. | 64.235.255.128/26 | JP | Tokyo |
| 14 | arn05 | mlab1 | 3257 | GTT Communications Inc. | 77.67.119.64/26 | SE | Stockholm |
| 15 | arn02 | mlab1 | 1273 | Vodafone Group PLC | 195.89.146.192/26 | SE | Stockholm |
| 16 | arn02 | mlab2 | 1273 | Vodafone Group PLC | 195.89.146.192/26 | SE | Stockholm |
| 17 | hnd03 | mlab1 | 2516 | KDDI Corporation | 111.109.1.64/26 | JP | Tokyo |
| 18 | hnd04 | mlab3 | 5580 | GTT Netherlands B.V. | 64.235.255.128/26 | JP | Tokyo |
| 19 | arn05 | mlab2 | 3257 | GTT Communications Inc. | 77.67.119.64/26 | SE | Stockholm |
| 20 | hnd03 | mlab3 | 2516 | KDDI Corporation | 111.109.1.64/26 | JP | Tokyo |
| 21 | arn06 | mlab1 | 6453 | TATA COMMUNICATIONS (AMERICA) INC | 193.142.125.64/26 | SE | Stockholm |
| 22 | arn03 | mlab3 | 3356 | Level 3 Parent, LLC | 213.242.86.64/26 | SE | Stockholm |
NDTGuide
provide a .get_schema()
function to provide a selected useful schema to help with
manually constructing BigQuery queries.
guide.get_schema()
{'a': {'CongestionControl': 'string',
'LossRate': 'float',
'MeanThroughputMbps': 'float',
'MinRTT': 'float',
'TestTime': 'TimeStamp',
'UUID': 'string'},
'client': {'Geo': {'City': 'string',
'ContinentCode': 'string',
'CountryCode': 'string',
'CountryName': 'string'},
'Network': {'ASName': 'string', 'ASNumber': 'integer', 'CIDR': 'string'}},
'date': 'date',
'id': 'string',
'server': {'Geo': {'City': 'string',
'ContinentCode': 'string',
'CountryCode': 'string',
'CountryName': 'string'},
'Machine': 'string',
'Network': {'ASName': 'string', 'ASNumber': 'integer', 'CIDR': 'string'},
'Site': 'string'}}
The customized queries can be passed into the same .exec_sql(sql)
function similar to other
provided built-in functions.
This work is generously sponsored by MeasurementLab as part of the M-Lab Research Fellowship for Spring 2022.