We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
OS: Windows 11 GPU: RTX 4090
Training 400 images
Attempting to train results in an error:
12:10:56-411744 INFO Start training LoRA Standard ... 12:10:56-412743 INFO Valid image folder names found in: C:/Users/nicol/Documents/Taocah_Training/Lora/Images/img 12:10:56-414744 INFO Folder 15_taoillust Illustrative Style: 394 images found 12:10:56-415744 INFO Folder 15_taoillust Illustrative Style: 5910 steps 12:10:56-415744 INFO Total steps: 5910 12:10:56-416744 INFO Train batch size: 1 12:10:56-416744 INFO Gradient accumulation steps: 1 12:10:56-417744 INFO Epoch: 10 12:10:56-417744 INFO Regulatization factor: 1 12:10:56-418743 INFO max_train_steps (5910 / 1 / 1 * 10 * 1) = 59100 12:10:56-418743 INFO stop_text_encoder_training = 0 12:10:56-419793 INFO lr_warmup_steps = 5910 12:10:56-420793 INFO accelerate launch --num_cpu_threads_per_process=2 "train_network.py" --enable_bucket --pretrained_model_name_or_path="C:/Users/nicol/Documents/Ai/stable-diffusion-webui/models/Stab le-diffusion/v1-5-pruned.safetensors" --train_data_dir="C:/Users/nicol/Documents/Taocah_Training/Lora/Images/img" --resolution="768x768" --output_dir="C:/Users/nicol/Documents/Taocah_Training/Lora/Images/model" --logging_dir="C:/Users/nicol/Documents/Taocah_Training/Lora/Images/log" --network_alpha="200" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=5e-05 --unet_lr=0.0001 --network_dim=200 --output_name="last" --lr_scheduler_num_cycles="10" --learning_rate="0.0001" --lr_scheduler="cosine" --lr_warmup_steps="5910" --train_batch_size="1" --max_train_steps="59100" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --cache_latents --optimizer_type="AdamW8bit" --max_data_loader_n_workers="0" --bucket_reso_steps=64 --xformers --bucket_no_upscale A matching Triton is not available, some optimizations will not be enabled. Error caught was: No module named 'triton' ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\train_network.py:873 in <module> │ │ │ │ 870 │ args = parser.parse_args() │ │ 871 │ args = train_util.read_config_from_file(args, parser) │ │ 872 │ │ │ ❱ 873 │ train(args) │ │ 874 │ │ │ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\train_network.py:82 in train │ │ │ │ 79 │ session_id = random.randint(0, 2**32) │ │ 80 │ training_started_at = time.time() │ │ 81 │ train_util.verify_training_args(args) │ │ ❱ 82 │ train_util.prepare_dataset_args(args, True) │ │ 83 │ │ │ 84 │ cache_latents = args.cache_latents │ │ 85 │ use_dreambooth_method = args.in_json is None │ │ │ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\library\train_util.py:2991 in prepare_dataset_args │ │ │ │ 2988 │ │ │ 2989 │ # assert args.resolution is not None, f"resolution is required / resolution(解像度 │ │ 2990 │ if args.resolution is not None: │ │ ❱ 2991 │ │ args.resolution = tuple([int(r) for r in args.resolution.split(",")]) │ │ 2992 │ │ if len(args.resolution) == 1: │ │ 2993 │ │ │ args.resolution = (args.resolution[0], args.resolution[0]) │ │ 2994 │ │ assert ( │ │ │ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\library\train_util.py:2991 in <listcomp> │ │ │ │ 2988 │ │ │ 2989 │ # assert args.resolution is not None, f"resolution is required / resolution(解像度 │ │ 2990 │ if args.resolution is not None: │ │ ❱ 2991 │ │ args.resolution = tuple([int(r) for r in args.resolution.split(",")]) │ │ 2992 │ │ if len(args.resolution) == 1: │ │ 2993 │ │ │ args.resolution = (args.resolution[0], args.resolution[0]) │ │ 2994 │ │ assert ( │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ ValueError: invalid literal for int() with base 10: '768x768' ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ C:\Users\nicol\AppData\Local\Programs\Python\Python310\lib\runpy.py:196 in _run_module_as_main │ │ │ │ 193 │ main_globals = sys.modules["__main__"].__dict__ │ │ 194 │ if alter_argv: │ │ 195 │ │ sys.argv[0] = mod_spec.origin │ │ ❱ 196 │ return _run_code(code, main_globals, None, │ │ 197 │ │ │ │ │ "__main__", mod_spec) │ │ 198 │ │ 199 def run_module(mod_name, init_globals=None, │ │ │ │ C:\Users\nicol\AppData\Local\Programs\Python\Python310\lib\runpy.py:86 in _run_code │ │ │ │ 83 │ │ │ │ │ __loader__ = loader, │ │ 84 │ │ │ │ │ __package__ = pkg_name, │ │ 85 │ │ │ │ │ __spec__ = mod_spec) │ │ ❱ 86 │ exec(code, run_globals) │ │ 87 │ return run_globals │ │ 88 │ │ 89 def _run_module_code(code, init_globals=None, │ │ │ │ in <module>:7 │ │ │ │ 4 from accelerate.commands.accelerate_cli import main │ │ 5 if __name__ == '__main__': │ │ 6 │ sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) │ │ ❱ 7 │ sys.exit(main()) │ │ 8 │ │ │ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate │ │ _cli.py:45 in main │ │ │ │ 42 │ │ exit(1) │ │ 43 │ │ │ 44 │ # Run │ │ ❱ 45 │ args.func(args) │ │ 46 │ │ 47 │ │ 48 if __name__ == "__main__": │ │ │ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py: │ │ 918 in launch_command │ │ │ │ 915 │ elif defaults is not None and defaults.compute_environment == ComputeEnvironment.AMA │ │ 916 │ │ sagemaker_launcher(defaults, args) │ │ 917 │ else: │ │ ❱ 918 │ │ simple_launcher(args) │ │ 919 │ │ 920 │ │ 921 def main(): │ │ │ │ C:\Users\nicol\Documents\Ai\Khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py: │ │ 580 in simple_launcher │ │ │ │ 577 │ process.wait() │ │ 578 │ if process.returncode != 0: │ │ 579 │ │ if not args.quiet: │ │ ❱ 580 │ │ │ raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) │ │ 581 │ │ else: │ │ 582 │ │ │ sys.exit(1) │ │ 583 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ CalledProcessError: Command '['C:\\Users\\nicol\\Documents\\Ai\\Khoya\\kohya_ss\\venv\\Scripts\\python.exe', 'train_network.py', '--enable_bucket', '--pretrained_model_name_or_path=C:/Users/nicol/Documents/Ai/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned. safetensors', '--train_data_dir=C:/Users/nicol/Documents/Taocah_Training/Lora/Images/img', '--resolution=768x768', '--output_dir=C:/Users/nicol/Documents/Taocah_Training/Lora/Images/model', '--logging_dir=C:/Users/nicol/Documents/Taocah_Training/Lora/Images/log', '--network_alpha=200', '--save_model_as=safetensors', '--network_module=networks.lora', '--text_encoder_lr=5e-05', '--unet_lr=0.0001', '--network_dim=200', '--output_name=last', '--lr_scheduler_num_cycles=10', '--learning_rate=0.0001', '--lr_scheduler=cosine', '--lr_warmup_steps=5910', '--train_batch_size=1', '--max_train_steps=59100', '--save_every_n_epochs=1', '--mixed_precision=fp16', '--save_precision=fp16', '--cache_latents', '--optimizer_type=AdamW8bit', '--max_data_loader_n_workers=0', '--bucket_reso_steps=64', '--xformers', '--bucket_no_upscale']' returned non-zero exit status 1.
I have the folder directories set up:
In the img folder contains which has all the images for training captioned by blip aswell.
here are my training parameters:
Any help would be greatly appreciated
The text was updated successfully, but these errors were encountered:
Use 768,768 for the max resolution... Not 769x768
I know... Weird but it need a comma instead of an x
Sorry, something went wrong.
try this it helped me, I had the same issue download the latest cuda toolkit:
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exe_local
Merge pull request #1087 from mgz-dev/fix-imports-on-svd_merge_lora
7f948db
fix broken import in svd_merge_lora script
No branches or pull requests
OS: Windows 11
GPU: RTX 4090
Training 400 images
Attempting to train results in an error:
I have the folder directories set up:
In the img folder contains
which has all the images for training captioned by blip aswell.
here are my training parameters:
Any help would be greatly appreciated
The text was updated successfully, but these errors were encountered: