-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
"Raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) " happened when starting studing #433
Comments
when i restart and train again,a new error happen.
|
Try training with AdamW instead of AdamW8bit. I think your car'd can use the bitsandbytes module required for AdamW8bit. |
Thanks for the suggestion, but it didn't work. |
So something related to windows and possibly windows drivers... Hard to fix those |
Hi, I found that the error occurred when loading the data. So I try to changed the parameter "num_workers" in the function "torch.utils.data.DataLoader" to turn it down, it work. And when I set it to 0, the training is the fastest…I think python's multiprocessing may not be very efficient in windows OS. |
Thank you for the update. I will update the default value in the GUI to set it to 0 to avoid similar issues for other users! |
Could you tell me how you solve this problem in a detailed way? Thx! |
You can fix it by updating to the latest version now, the author has put this setting in the GUI. |
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link
CUDA SETUP: Loading binary D:\kohya\kohya_ss\venv\lib\site-packages\bitsandbytes\libbitsandbytes_cuda116.dll...
use 8-bit AdamW optimizer | {}
running training / 学習開始
num train images * repeats / 学習画像の数×繰り返し回数: 1500
num reg images / 正則化画像の数: 0
num batches per epoch / 1epochのバッチ数: 1500
num epochs / epoch数: 1
batch size per device / バッチサイズ: 1
gradient accumulation steps / 勾配を合計するステップ数 = 1
total optimization steps / 学習ステップ数: 1500
steps: 0%| | 0/1500 [00:00<?, ?it/s]epoch 1/1
Traceback (most recent call last):
File "D:\kohya\kohya_ss\python310\lib\runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "D:\kohya\kohya_ss\python310\lib\runpy.py", line 86, in run_code
exec(code, run_globals)
File "D:\kohya\kohya_ss\venv\Scripts\accelerate.exe_main.py", line 7, in
File "D:\kohya\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 45, in main
args.func(args)
File "D:\kohya\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command
simple_launcher(args)
File "D:\kohya\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
subprocess.CalledProcessError: Command '['D:\kohya\kohya_ss\venv\Scripts\python.exe', 'train_network.py', '--enable_bucket', '--pretrained_model_name_or_path=C:/Users/PC/Desktop/test/v1-5-pruned-emaonly.safetensors', '--train_data_dir=C:/Users/PC/Desktop/test/input', '--resolution=512,512', '--output_dir=C:/Users/PC/Desktop/test/output', '--logging_dir=C:/Users/PC/Desktop/test/log', '--network_alpha=1', '--save_model_as=safetensors', '--network_module=networks.lora', '--text_encoder_lr=5e-5', '--unet_lr=0.0001', '--network_dim=8', '--output_name=last', '--lr_scheduler_num_cycles=1', '--learning_rate=0.0001', '--lr_scheduler=cosine', '--lr_warmup_steps=150', '--train_batch_size=1', '--max_train_steps=1500', '--save_every_n_epochs=1', '--mixed_precision=fp16', '--save_precision=fp16', '--cache_latents', '--optimizer_type=AdamW8bit', '--bucket_reso_steps=64', '--xformers', '--bucket_no_upscale']' returned non-zero exit status 3221225477.
The text was updated successfully, but these errors were encountered: