Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(tests): Update experiments CRs #222

Merged
merged 1 commit into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 16 additions & 28 deletions tests/assets/crs/experiments/bayesian-optimization.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,9 @@ metadata:
name: bayesian-optimization
spec:
objective:
type: maximize
goal: 0.99
objectiveMetricName: Validation-accuracy
additionalMetricNames:
- Train-accuracy
type: minimize
goal: 0.001
objectiveMetricName: loss
algorithm:
algorithmName: bayesianoptimization
algorithmSettings:
Expand All @@ -27,31 +25,21 @@ spec:
parameterType: double
feasibleSpace:
min: "0.01"
max: "0.03"
- name: num-layers
parameterType: int
feasibleSpace:
min: "2"
max: "5"
- name: optimizer
parameterType: categorical
max: "0.05"
- name: momentum
parameterType: double
feasibleSpace:
list:
- sgd
- adam
- ftrl
min: "0.5"
max: "0.9"
trialTemplate:
primaryContainerName: training-container
trialParameters:
- name: learningRate
description: Learning rate for the training model
reference: lr
- name: numberLayers
description: Number of training model layers
reference: num-layers
- name: optimizer
description: Training model optimizer (sdg, adam or ftrl)
reference: optimizer
- name: momentum
description: Momentum for the training model
reference: momentum
trialSpec:
apiVersion: batch/v1
kind: Job
Expand All @@ -60,14 +48,14 @@ spec:
spec:
containers:
- name: training-container
image: docker.io/kubeflowkatib/mxnet-mnist:v0.17.0
image: docker.io/kubeflowkatib/pytorch-mnist-cpu:v0.17.0
command:
- "python3"
- "/opt/mxnet-mnist/mnist.py"
- "--batch-size=64"
- "/opt/pytorch-mnist/mnist.py"
- "--epochs=1"
- "--batch-size=16"
- "--lr=${trialParameters.learningRate}"
- "--num-layers=${trialParameters.numberLayers}"
- "--optimizer=${trialParameters.optimizer}"
- "--momentum=${trialParameters.momentum}"
resources: # modified
limits: # modified
memory: "2Gi" # modified
Expand Down
44 changes: 16 additions & 28 deletions tests/assets/crs/experiments/cmaes.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,9 @@ metadata:
name: cmaes
spec:
objective:
type: maximize
goal: 0.99
objectiveMetricName: Validation-accuracy
additionalMetricNames:
- Train-accuracy
type: minimize
goal: 0.001
objectiveMetricName: loss
algorithm:
algorithmName: cmaes
algorithmSettings:
Expand All @@ -27,31 +25,21 @@ spec:
parameterType: double
feasibleSpace:
min: "0.01"
max: "0.03"
- name: num-layers
parameterType: int
feasibleSpace:
min: "2"
max: "5"
- name: optimizer
parameterType: categorical
max: "0.05"
- name: momentum
parameterType: double
feasibleSpace:
list:
- sgd
- adam
- ftrl
min: "0.5"
max: "0.9"
trialTemplate:
primaryContainerName: training-container
trialParameters:
- name: learningRate
description: Learning rate for the training model
reference: lr
- name: numberLayers
description: Number of training model layers
reference: num-layers
- name: optimizer
description: Training model optimizer (sdg, adam or ftrl)
reference: optimizer
- name: momentum
description: Momentum for the training model
reference: momentum
trialSpec:
apiVersion: batch/v1
kind: Job
Expand All @@ -60,14 +48,14 @@ spec:
spec:
containers:
- name: training-container
image: docker.io/kubeflowkatib/mxnet-mnist:v0.17.0
image: docker.io/kubeflowkatib/pytorch-mnist-cpu:v0.17.0
command:
- "python3"
- "/opt/mxnet-mnist/mnist.py"
- "--batch-size=64"
- "/opt/pytorch-mnist/mnist.py"
- "--epochs=1"
- "--batch-size=16"
- "--lr=${trialParameters.learningRate}"
- "--num-layers=${trialParameters.numberLayers}"
- "--optimizer=${trialParameters.optimizer}"
- "--momentum=${trialParameters.momentum}"
resources: # modified
limits: # modified
memory: "2Gi" # modified
Expand Down
6 changes: 3 additions & 3 deletions tests/assets/crs/experiments/enas-cpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@ kind: Experiment
metadata:
name: enas-cpu
spec:
parallelTrialCount: 1
maxTrialCount: 1
maxFailedTrialCount: 1
parallelTrialCount: 1 # modified
maxTrialCount: 1 # modified
maxFailedTrialCount: 1 # modified
objective:
type: maximize
goal: 0.99
Expand Down
49 changes: 19 additions & 30 deletions tests/assets/crs/experiments/grid-example.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,9 @@ metadata:
name: grid
spec:
objective:
type: maximize
goal: 0.99
objectiveMetricName: Validation-accuracy
additionalMetricNames:
- Train-accuracy
type: minimize
goal: 0.001
objectiveMetricName: loss
algorithm:
algorithmName: grid
parallelTrialCount: 1 # modified
Expand All @@ -23,33 +21,24 @@ spec:
- name: lr
parameterType: double
feasibleSpace:
min: "0.001"
max: "0.01"
step: "0.001"
- name: num-layers
parameterType: int
feasibleSpace:
min: "2"
max: "5"
- name: optimizer
parameterType: categorical
min: "0.01"
step: "0.005"
max: "0.05"
- name: momentum
parameterType: double
feasibleSpace:
list:
- sgd
- adam
- ftrl
min: "0.5"
step: "0.1"
max: "0.9"
trialTemplate:
primaryContainerName: training-container
trialParameters:
- name: learningRate
description: Learning rate for the training model
reference: lr
- name: numberLayers
description: Number of training model layers
reference: num-layers
- name: optimizer
description: Training model optimizer (sdg, adam or ftrl)
reference: optimizer
- name: momentum
description: Momentum for the training model
reference: momentum
trialSpec:
apiVersion: batch/v1
kind: Job
Expand All @@ -58,14 +47,14 @@ spec:
spec:
containers:
- name: training-container
image: docker.io/kubeflowkatib/mxnet-mnist:v0.17.0
image: docker.io/kubeflowkatib/pytorch-mnist-cpu:v0.17.0
command:
- "python3"
- "/opt/mxnet-mnist/mnist.py"
- "--batch-size=64"
- "/opt/pytorch-mnist/mnist.py"
- "--epochs=1"
- "--batch-size=16"
- "--lr=${trialParameters.learningRate}"
- "--num-layers=${trialParameters.numberLayers}"
- "--optimizer=${trialParameters.optimizer}"
- "--momentum=${trialParameters.momentum}"
resources: # modified
limits: # modified
memory: "2Gi" # modified
Expand Down
45 changes: 16 additions & 29 deletions tests/assets/crs/experiments/hyperband.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,9 @@ spec:
parallelTrialCount: 2
maxTrialCount: 2
objective:
type: maximize
goal: 0.99
objectiveMetricName: Validation-accuracy
additionalMetricNames:
- Train-accuracy
type: minimize
goal: 0.001
objectiveMetricName: loss
algorithm:
algorithmName: hyperband
algorithmSettings:
Expand All @@ -31,19 +29,12 @@ spec:
parameterType: double
feasibleSpace:
min: "0.01"
max: "0.03"
- name: num-layers
parameterType: int
feasibleSpace:
min: "2"
max: "5"
- name: optimizer
parameterType: categorical
max: "0.05"
- name: momentum
parameterType: double
feasibleSpace:
list:
- sgd
- adam
- ftrl
min: "0.5"
max: "0.9"
- name: num-epochs
parameterType: int
feasibleSpace:
Expand All @@ -55,12 +46,9 @@ spec:
- name: learningRate
description: Learning rate for the training model
reference: lr
- name: numberLayers
description: Number of training model layers
reference: num-layers
- name: optimizer
description: Training model optimizer (sdg, adam or ftrl)
reference: optimizer
- name: momentum
description: Momentum for the training model
reference: momentum
- name: numberEpochs
description: Number of epochs to train the model
reference: num-epochs
Expand All @@ -72,15 +60,14 @@ spec:
spec:
containers:
- name: training-container
image: docker.io/kubeflowkatib/mxnet-mnist:v0.17.0
image: docker.io/kubeflowkatib/pytorch-mnist-cpu:v0.17.0
command:
- "python3"
- "/opt/mxnet-mnist/mnist.py"
- "--batch-size=32"
- "/opt/pytorch-mnist/mnist.py"
- "--epochs=${trialParameters.numberEpochs}"
- "--batch-size=16"
- "--lr=${trialParameters.learningRate}"
- "--num-layers=${trialParameters.numberLayers}"
- "--optimizer=${trialParameters.optimizer}"
- "--num-epochs=${trialParameters.numberEpochs}"
- "--momentum=${trialParameters.momentum}"
resources: # modified
limits: # modified
memory: "2Gi" # modified
Expand Down
33 changes: 16 additions & 17 deletions tests/assets/crs/experiments/median-stop.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,9 @@ metadata:
name: median-stop
spec:
objective:
type: maximize
goal: 0.99
objectiveMetricName: Validation-accuracy
additionalMetricNames:
- Train-accuracy
type: minimize
goal: 0.001
objectiveMetricName: loss
algorithm:
algorithmName: random
earlyStopping:
Expand All @@ -31,22 +29,22 @@ spec:
parameterType: double
feasibleSpace:
min: "0.01"
max: "0.5"
- name: num-epochs
parameterType: int
max: "0.05"
- name: momentum
parameterType: double
feasibleSpace:
min: "3"
max: "4"
min: "0.5"
max: "0.9"
trialTemplate:
retain: true
primaryContainerName: training-container
trialParameters:
- name: learningRate
description: Learning rate for the training model
reference: lr
- name: numberEpochs
description: Number of epochs to train the model
reference: num-epochs
- name: momentum
description: Momentum for the training model
reference: momentum
trialSpec:
apiVersion: batch/v1
kind: Job
Expand All @@ -55,13 +53,14 @@ spec:
spec:
containers:
- name: training-container
image: docker.io/kubeflowkatib/mxnet-mnist:v0.17.0
image: docker.io/kubeflowkatib/pytorch-mnist-cpu:v0.17.0
command:
- "python3"
- "/opt/mxnet-mnist/mnist.py"
- "--batch-size=64"
- "/opt/pytorch-mnist/mnist.py"
- "--epochs=1"
- "--batch-size=16"
- "--lr=${trialParameters.learningRate}"
- "--num-epochs=${trialParameters.numberEpochs}"
- "--momentum=${trialParameters.momentum}"
resources: # modified
limits: # modified
memory: "2Gi" # modified
Expand Down
Loading
Loading