An unofficial Python library for the Metabase API.
pip install metabase-python
Start by creating an instance of Metabase with your credentials.
from metabase import Metabase
metabase = Metabase(
host="<host>",
user="<username/email>",
password="<password>",
)
You can then interact with any of the supported endpoints through the classes included in this package. Methods that
instantiate an object from the Metabase API require the using
parameter which expects an instance of Metabase
such
as the one we just instantiated above. All changes are reflected in Metabase instantly.
from metabase import User
# get all objects
users = User.list(using=metabase)
# get an object by ID
user = User.get(1, using=metabase)
# attributes are automatically loaded and available in the instance
if user.is_active:
print("User is active!")
# update any available attribute
user.update(is_superuser=True)
# delete an object
user.delete()
# create an object
new_user = User.create(
using=metabase,
first_name="<first_name>",
last_name="<last_name>",
email="<email>",
password="<password>"
)
The methods .list()
, .get()
, .create()
, .update()
, .delete()
are available on all
endpoints that support them in Metabase API.
Some endpoints also support additional methods:
from metabase import User
user = User.get(1, using=metabase)
user.reactivate() # Reactivate user
user.send_invite() # Resend the user invite email for a given user.
Here's a slightly more advanced example:
from metabase import User, PermissionGroup, PermissionMembership
# create a new PermissionGroup
my_group = PermissionGroup.create(name="My Group", using=metabase)
for user in User.list():
# add all users to my_group
PermissionMembership.create(
group_id=my_group.id,
user_id=user.id,
using=metabase,
)
You can also execute queries and get results back as a Pandas DataFrame. You can provide the exact MBQL, or use
the Query
object to compile MBQL (i.e. Metabase Query Language) from Python classes included in this package.
from metabase import Dataset, Query, Count, GroupBy, TemporalOption
dataset = Dataset.create(
database=1,
type="query",
query={
"source-table": 1,
"aggregation": [["count"]],
"breakout": ["field", 7, {"temporal-unit": "year"},],
},
using=metabase,
)
# compile the MBQL above using the Query object
dataset = Dataset.create(
database=1,
type="query",
query=Query(
table_id=2,
aggregations=[Count()],
group_by=[GroupBy(id=7, option=TemporalOption.YEAR)]
).compile(),
using=metabase
)
df = dataset.to_pandas()
As shown above, the Query
object allows you to easily compile MBQL from Python objects. Here is a
more complete example:
from metabase import Query, Sum, Average, Metric, Greater, GroupBy, BinOption, TemporalOption
query = Query(
table_id=5,
aggregations=[
Sum(id=5), # Provide the ID for the Metabase field
Average(id=5, name="Average of Price"), # Optionally, you can provide a name
Metric.get(5) # You can also provide your Metabase Metrics
],
filters=[
Greater(id=1, value=5.5) # Filter for values of FieldID 1 greater than 5.5
],
group_by=[
GroupBy(id=4), # Group by FieldID 4
GroupBy(id=5, option=BinOption.AUTO), # You can use Metabase's binning feature for numeric fields
GroupBy(id=5, option=TemporalOption.YEAR) # Or it's temporal option for date fields
]
)
print(query.compile())
{
'source-table': 5,
'aggregation': [
['sum', ['field', 5, None]],
['aggregation-options', ['avg', ['field', 5, None]], {'name': 'Average of Price', 'display-name': 'Average of Price'}],
["metric", 5]
],
'breakout': [
['field', 4, None],
['field', 5, {'binning': {'strategy': 'default'}}],
['field', 5, {'temporal-unit': 'year'}]
],
'filter': ['>', ['field', 1, None], 5.5]
}
This can also be used to more easily create Metric
objects.
from metabase import Metric, Query, Count, EndsWith, CaseOption
metric = Metric.create(
name="Gmail Users",
description="Number of users with a @gmail.com email address.",
table_id=2,
definition=Query(
table_id=1,
aggregations=[Count()],
filters=[EndsWith(id=4, value="@gmail.com", option=CaseOption.CASE_INSENSITIVE)]
).compile(),
using=metabase
)
For a full list of endpoints and methods, see Metabase API.
Endpoints | Support | Notes |
---|---|---|
Activity | ❌ | |
Alert | ❌ | |
Automagic dashboards | ❌ | |
Card | ✅ | |
Collection | ❌ | |
Dashboard | ❌ | |
Database | ✅ | |
Dataset | ✅ | |
❌ | ||
Embed | ❌ | |
Field | ✅ | |
Geojson | ❌ | |
Ldap | ❌ | |
Login history | ❌ | |
Metric | ✅ | |
Native query snippet | ❌ | |
Notify | ❌ | |
Permissions | ✅ | |
Premium features | ❌ | |
Preview embed | ❌ | |
Public | ❌ | |
Pulse | ❌ | |
Revision | ❌ | |
Search | ❌ | |
Segment | ✅ | |
Session | ❌ | |
Setting | ❌ | |
Setup | ❌ | |
Slack | ❌ | |
Table | ✅ | |
Task | ❌ | |
Tiles | ❌ | |
Transform | ❌ | |
User | ✅ | |
Util | ❌ |
Contributions are welcome!
This library is distributed under the MIT license.