-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[ENH] Upgrade tests and release to Python 3.12 #1715
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Reviewer ChecklistPlease leverage this checklist to ensure your code review is thorough before approving Testing, Bugs, Errors, Logs, Documentation
System Compatibility
Quality
|
HammadB
approved these changes
Feb 13, 2024
1 task
atroyn
force-pushed
the
anton/python_312
branch
from
February 16, 2024 20:53
54b29fa
to
748a90b
Compare
atroyn
pushed a commit
that referenced
this pull request
Feb 16, 2024
Needed to fix the failing property tests in #1715 ## Description of changes *Summarize the changes made by this PR.* - Improvements & Bug fixes - Moved the model update after conditional checks for new_name and metadata. - New functionality - ... ## Test plan *How are these changes tested?* - [ ] Tests pass locally with `pytest` for python, `yarn test` for js ## Documentation Changes Failure logs + Error analysis: ``` > assert c.metadata == self.model[coll.name] E AssertionError: assert {'g': 1.1, 'n...': 31734, ...} == {'3': 'd71IL'...235e-208, ...} E E Left contains 5 more items: E {'g': 1.1, E 'n1dUTalF-MY': -1000000.0, E 'ugXZ_hK': 5494, E 'xVW09xUpDZA': 31734, E 'y': 'G3EtXTZ'} E Right contains 9 more items: E {'3': 'd71IL', E '45227B': '65', E '7DjCkbusc-K': 'vc94', E '8-tD9nJd': 4.8728578364902235e-208, E 'Bpyj': -675165.8688164671, E 'Uy6KZu6abCD9Z': -72, E 'giC': -6.103515625e-05, E 'pO4': -0.0, E 'r3': -41479} E E Full diff: E { E + 'g': 1.1, E + 'n1dUTalF-MY': -1000000.0, E + 'ugXZ_hK': 5494, E + 'xVW09xUpDZA': 31734, E + 'y': 'G3EtXTZ', E - '3': 'd71IL', E - '45227B': '65', E - '7DjCkbusc-K': 'vc94', E - '8-tD9nJd': 4.8728578364902235e-208, E - 'Bpyj': -675165.8688164671, E - 'Uy6KZu6abCD9Z': -72, E - 'giC': -6.103515625e-05, E - 'pO4': -0.0, E - 'r3': -41479, E } E Falsifying example: E state = CollectionStateMachine() E state.initialize() E state.list_collections_with_limit_offset(limit=5, offset=0) E state.list_collections_with_limit_offset(limit=4, offset=5) E (v1,) = state.get_or_create_coll(coll=Collection(name='E60V1ekr9eDcL\n', id=UUID('4435abf2-9fc6-4d5a-bb7b-33177a956d44'), metadata={'_m5jalwo': -228}, dimension=1356, dtype=<class 'numpy.float64'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181bb0590>), new_metadata={'k5o6Q': 'Op', E 'LP': -5.960464477539063e-08, E 'pzHdzczVCn': '81', E '7': False, E 'e4Lz': 999999.0, E '206': False}) E (v2,) = state.get_or_create_coll(coll=v1, new_metadata=None) E (v3,) = state.get_or_create_coll(coll=v1, new_metadata={'4OQN': -2097032423, E 'cW': -0.99999, E 'o6wq3': -147, E 'M8j3KBU': -2.2250738585072014e-308, E 'D8nZrA0': 252, E 'up4P_': 34761, E 'L_win': -6.103515625e-05, E '5kt': '_q', E 'UybO2dJF4': -0.3333333333333333, E 'NfQ83VsmI': 'Qpy', E 'fk': -1.192092896e-07, E 'J1ck': 'ozL'}) E (v4,) = state.get_or_create_coll(coll=Collection(name='nOeHg-OXVl', id=UUID('9c28b027-9f22-409c-b3fd-c5de03b60018'), metadata=None, dimension=1009, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181bdfe50>), new_metadata={'p4isW': 'k8l', E 'k2tFn3v1E': True, E 'R': 'ji-2d5lDGV', E 'K5vdi': False, E 'TZs': False, E 'OgJ_DZ2j': False, E 'ovZjD3': -64297, E '9p': True, E '32f3nw8h2d54LPCzsV': 1733994327, E '4P': 2.896381722565434e-121}) E state.list_collections_with_limit_offset(limit=2, offset=0) E state.list_collections_with_limit_offset(limit=3, offset=0) E state.list_collections_with_limit_offset(limit=5, offset=5) E (v5,) = state.modify_coll(coll=v4, new_metadata=None, new_name=None) E (v6,) = state.get_or_create_coll(coll=Collection(name='A1w5m1l5I\n', id=UUID('606d59a6-6f66-456d-81ca-a8ea029c318c'), metadata={'3': '6Y'}, dimension=1544, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6d110>), new_metadata=None) E (v7,) = state.get_or_create_coll(coll=v4, new_metadata={'01316': -0.0, '14UwVu': 81, 'C9eMDDdnB0oy': False, 'n964': '0a'}) E state.modify_coll(coll=v7, new_metadata={}, new_name='B-5Z2m2j52121') E state.get_or_create_coll(coll=Collection(name='E31\n', id=UUID('e67426e8-8595-4916-92a6-b2777b52f157'), metadata={'0Kr5Wp': -769, '9xT': 143980.04500299558, '8': True}, dimension=1800, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6d6d0>), new_metadata={}) E state.list_collections_with_limit_offset(limit=2, offset=1) E state.list_collections_with_limit_offset(limit=2, offset=0) E state.list_collections_with_limit_offset(limit=1, offset=0) E state.list_collections_with_limit_offset(limit=1, offset=1) E (v8,) = state.get_or_create_coll(coll=Collection(name='A00\n', id=UUID('01522a4f-3383-4a58-8b18-0418e38e3ec6'), metadata=None, dimension=1032, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d94bd0>), new_metadata=None) E (v9,) = state.get_or_create_coll(coll=v6, new_metadata=None) E state.list_collections_with_limit_offset(limit=3, offset=2) E (v10,) = state.modify_coll(coll=v3, new_metadata=None, new_name=None) E (v11,) = state.modify_coll(coll=v10, new_metadata=None, new_name=None) E state.modify_coll(coll=v9, new_metadata={}, new_name=None) E (v12,) = state.get_or_create_coll(coll=Collection(name='A10\n', id=UUID('01efb806-fffa-4ce6-b285-b9aae55f50af'), metadata={}, dimension=258, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd183bbe5d0>), new_metadata=None) E state.modify_coll(coll=v11, new_metadata={}, new_name='A01011110\n') E state.list_collections_with_limit_offset(limit=3, offset=1) ------ Problem start here ------ E (v13,) = state.get_or_create_coll(coll=Collection(name='C1030', id=UUID('7858d028-1295-4769-96c1-e58bf242b7bd'), metadata={}, dimension=2, dtype=<class 'numpy.float32'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181bbff10>), new_metadata=None) E (v14,) = state.get_or_create_coll(coll=Collection(name='A01200671\n', id=UUID('f77d01a4-e43f-4b17-9579-daadccad2f71'), metadata={'0': 'L', '01': -4}, dimension=1282, dtype=<class 'numpy.float32'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d5a9d0>), new_metadata=None) E state.list_collections_with_limit_offset(limit=2, offset=1) E (v15,) = state.modify_coll(coll=v13, new_metadata={'0': '10', '40': '0', 'p1nviWeL7fO': 'qN', '7b': 'YS', 'VYWq4LEMWjCo': True}, new_name='OF5F0MzbQg\n') E (v16,) = state.get_or_create_coll(coll=Collection(name='VS0QGh', id=UUID('c6b85c1d-c3e9-4d37-b9ca-c4b4266193e9'), metadata={'h': 5.681951615025145e-227, 'A1': 61126, 'uhUhLEEMfeC_kN': 2147483647, 'weF': 'pSP', 'B3DSaP': False, '6H533K': 1.192092896e-07}, dimension=1915, dtype=<class 'numpy.float32'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d202d0>), new_metadata={'xVW09xUpDZA': 31734, E 'g': 1.1, E 'n1dUTalF-MY': -1000000.0, E 'y': 'G3EtXTZ', E 'ugXZ_hK': 5494}) E state.list_collections_with_limit_offset(limit=4, offset=5) E state.modify_coll(coll=v16, new_metadata={'giC': -6.103515625e-05, E '45227B': '65', E 'Uy6KZu6abCD9Z': -72, E 'r3': -41479, E 'pO4': -0.0, E 'Bpyj': -675165.8688164671, E '8-tD9nJd': 4.8728578364902235e-208, E '7DjCkbusc-K': 'vc94', E '3': 'd71IL'}, new_name='OF5F0MzbQg\n') E state.list_collections_with_limit_offset(limit=4, offset=4) E (v17,) = state.modify_coll(coll=v15, new_metadata={'L35J2S': 'K0l026'}, new_name='Ai1\n') E (v18,) = state.get_or_create_coll(coll=v13, new_metadata=None) E state.list_collections_with_limit_offset(limit=3, offset=1) E (v19,) = state.modify_coll(coll=v14, new_metadata=None, new_name='F0K570\n') E (v20,) = state.get_or_create_coll(coll=Collection(name='Ad5m003\n', id=UUID('5e23b560-7f62-4f14-bf80-93f5ff4e906a'), metadata={'3M': 'q_'}, dimension=57, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d5aad0>), new_metadata={'_000': 852410}) E (v21,) = state.get_or_create_coll(coll=v14, new_metadata=None) E state.list_collections_with_limit_offset(limit=4, offset=1) E (v22,) = state.modify_coll(coll=v21, new_metadata=None, new_name=None) E (v23,) = state.modify_coll(coll=v22, new_metadata=None, new_name=None) E state.list_collections_with_limit_offset(limit=1, offset=1) E state.get_or_create_coll(coll=Collection(name='VS0QGh', id=UUID('ca92837d-3425-436c-bf11-dba969f0f8c7'), metadata=None, dimension=326, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6f4d0>), new_metadata=None) E state.teardown() ``` The problem starts in v13 where we create a new collection named `C1030` In v15 we modify the collection `C1030` and rename it to `OF5F0MzbQg\n` In v16 we create a new collection named `VS0QGh` We try to modify the collection `VS0QGh` and rename it to `OF5F0MzbQg\n` which is the same name as the collection `C1030` which is fails in the and we return empty from the rule. However we have already updated the model: ```python if new_metadata is not None: if len(new_metadata) == 0: with pytest.raises(Exception): c = self.api.get_or_create_collection( name=coll.name, metadata=new_metadata, embedding_function=coll.embedding_function, ) return multiple() coll.metadata = new_metadata self.set_model(coll.name, coll.metadata) # <--- here we update the metadata if new_name is not None: if new_name in self.model and new_name != coll.name: with pytest.raises(Exception): # <--- fail here to rename the collection to `OF5F0MzbQg\n` c.modify(metadata=new_metadata, name=new_name) return multiple() prev_metadata = self.model[coll.name] self.delete_from_model(coll.name) self.set_model(new_name, prev_metadata) coll.name = new_name ``` then in `E state.get_or_create_coll(coll=Collection(name='VS0QGh', id=UUID('ca92837d-3425-436c-bf11-dba969f0f8c7'), metadata=None, dimension=326, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6f4d0>), new_metadata=None)` We try to create or get collection `VS0QGh` which exists in API and in state. Metadata and new metadata are None so we fall into case 0. Existing collection with old metadata and but we take the metadata from model which has been updated after the failure above. So we have API version of the metadata and partly updated model metadata, which causes the failure.
atroyn
force-pushed
the
anton/python_312
branch
from
February 16, 2024 21:13
748a90b
to
ffed147
Compare
atroyn
force-pushed
the
anton/python_312
branch
from
February 21, 2024 17:44
ffed147
to
1678ec5
Compare
Current dependencies on/for this PR: This stack of pull requests is managed by Graphite. |
atroyn
changed the title
[DRAFT] Upgrade tests and release to Python 3.12
[ENH] Upgrade tests and release to Python 3.12
Feb 21, 2024
atroyn
pushed a commit
to csbasil/chroma
that referenced
this pull request
Apr 3, 2024
Needed to fix the failing property tests in chroma-core#1715 ## Description of changes *Summarize the changes made by this PR.* - Improvements & Bug fixes - Moved the model update after conditional checks for new_name and metadata. - New functionality - ... ## Test plan *How are these changes tested?* - [ ] Tests pass locally with `pytest` for python, `yarn test` for js ## Documentation Changes Failure logs + Error analysis: ``` > assert c.metadata == self.model[coll.name] E AssertionError: assert {'g': 1.1, 'n...': 31734, ...} == {'3': 'd71IL'...235e-208, ...} E E Left contains 5 more items: E {'g': 1.1, E 'n1dUTalF-MY': -1000000.0, E 'ugXZ_hK': 5494, E 'xVW09xUpDZA': 31734, E 'y': 'G3EtXTZ'} E Right contains 9 more items: E {'3': 'd71IL', E '45227B': '65', E '7DjCkbusc-K': 'vc94', E '8-tD9nJd': 4.8728578364902235e-208, E 'Bpyj': -675165.8688164671, E 'Uy6KZu6abCD9Z': -72, E 'giC': -6.103515625e-05, E 'pO4': -0.0, E 'r3': -41479} E E Full diff: E { E + 'g': 1.1, E + 'n1dUTalF-MY': -1000000.0, E + 'ugXZ_hK': 5494, E + 'xVW09xUpDZA': 31734, E + 'y': 'G3EtXTZ', E - '3': 'd71IL', E - '45227B': '65', E - '7DjCkbusc-K': 'vc94', E - '8-tD9nJd': 4.8728578364902235e-208, E - 'Bpyj': -675165.8688164671, E - 'Uy6KZu6abCD9Z': -72, E - 'giC': -6.103515625e-05, E - 'pO4': -0.0, E - 'r3': -41479, E } E Falsifying example: E state = CollectionStateMachine() E state.initialize() E state.list_collections_with_limit_offset(limit=5, offset=0) E state.list_collections_with_limit_offset(limit=4, offset=5) E (v1,) = state.get_or_create_coll(coll=Collection(name='E60V1ekr9eDcL\n', id=UUID('4435abf2-9fc6-4d5a-bb7b-33177a956d44'), metadata={'_m5jalwo': -228}, dimension=1356, dtype=<class 'numpy.float64'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181bb0590>), new_metadata={'k5o6Q': 'Op', E 'LP': -5.960464477539063e-08, E 'pzHdzczVCn': '81', E '7': False, E 'e4Lz': 999999.0, E '206': False}) E (v2,) = state.get_or_create_coll(coll=v1, new_metadata=None) E (v3,) = state.get_or_create_coll(coll=v1, new_metadata={'4OQN': -2097032423, E 'cW': -0.99999, E 'o6wq3': -147, E 'M8j3KBU': -2.2250738585072014e-308, E 'D8nZrA0': 252, E 'up4P_': 34761, E 'L_win': -6.103515625e-05, E '5kt': '_q', E 'UybO2dJF4': -0.3333333333333333, E 'NfQ83VsmI': 'Qpy', E 'fk': -1.192092896e-07, E 'J1ck': 'ozL'}) E (v4,) = state.get_or_create_coll(coll=Collection(name='nOeHg-OXVl', id=UUID('9c28b027-9f22-409c-b3fd-c5de03b60018'), metadata=None, dimension=1009, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181bdfe50>), new_metadata={'p4isW': 'k8l', E 'k2tFn3v1E': True, E 'R': 'ji-2d5lDGV', E 'K5vdi': False, E 'TZs': False, E 'OgJ_DZ2j': False, E 'ovZjD3': -64297, E '9p': True, E '32f3nw8h2d54LPCzsV': 1733994327, E '4P': 2.896381722565434e-121}) E state.list_collections_with_limit_offset(limit=2, offset=0) E state.list_collections_with_limit_offset(limit=3, offset=0) E state.list_collections_with_limit_offset(limit=5, offset=5) E (v5,) = state.modify_coll(coll=v4, new_metadata=None, new_name=None) E (v6,) = state.get_or_create_coll(coll=Collection(name='A1w5m1l5I\n', id=UUID('606d59a6-6f66-456d-81ca-a8ea029c318c'), metadata={'3': '6Y'}, dimension=1544, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6d110>), new_metadata=None) E (v7,) = state.get_or_create_coll(coll=v4, new_metadata={'01316': -0.0, '14UwVu': 81, 'C9eMDDdnB0oy': False, 'n964': '0a'}) E state.modify_coll(coll=v7, new_metadata={}, new_name='B-5Z2m2j52121') E state.get_or_create_coll(coll=Collection(name='E31\n', id=UUID('e67426e8-8595-4916-92a6-b2777b52f157'), metadata={'0Kr5Wp': -769, '9xT': 143980.04500299558, '8': True}, dimension=1800, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6d6d0>), new_metadata={}) E state.list_collections_with_limit_offset(limit=2, offset=1) E state.list_collections_with_limit_offset(limit=2, offset=0) E state.list_collections_with_limit_offset(limit=1, offset=0) E state.list_collections_with_limit_offset(limit=1, offset=1) E (v8,) = state.get_or_create_coll(coll=Collection(name='A00\n', id=UUID('01522a4f-3383-4a58-8b18-0418e38e3ec6'), metadata=None, dimension=1032, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d94bd0>), new_metadata=None) E (v9,) = state.get_or_create_coll(coll=v6, new_metadata=None) E state.list_collections_with_limit_offset(limit=3, offset=2) E (v10,) = state.modify_coll(coll=v3, new_metadata=None, new_name=None) E (v11,) = state.modify_coll(coll=v10, new_metadata=None, new_name=None) E state.modify_coll(coll=v9, new_metadata={}, new_name=None) E (v12,) = state.get_or_create_coll(coll=Collection(name='A10\n', id=UUID('01efb806-fffa-4ce6-b285-b9aae55f50af'), metadata={}, dimension=258, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd183bbe5d0>), new_metadata=None) E state.modify_coll(coll=v11, new_metadata={}, new_name='A01011110\n') E state.list_collections_with_limit_offset(limit=3, offset=1) ------ Problem start here ------ E (v13,) = state.get_or_create_coll(coll=Collection(name='C1030', id=UUID('7858d028-1295-4769-96c1-e58bf242b7bd'), metadata={}, dimension=2, dtype=<class 'numpy.float32'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181bbff10>), new_metadata=None) E (v14,) = state.get_or_create_coll(coll=Collection(name='A01200671\n', id=UUID('f77d01a4-e43f-4b17-9579-daadccad2f71'), metadata={'0': 'L', '01': -4}, dimension=1282, dtype=<class 'numpy.float32'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d5a9d0>), new_metadata=None) E state.list_collections_with_limit_offset(limit=2, offset=1) E (v15,) = state.modify_coll(coll=v13, new_metadata={'0': '10', '40': '0', 'p1nviWeL7fO': 'qN', '7b': 'YS', 'VYWq4LEMWjCo': True}, new_name='OF5F0MzbQg\n') E (v16,) = state.get_or_create_coll(coll=Collection(name='VS0QGh', id=UUID('c6b85c1d-c3e9-4d37-b9ca-c4b4266193e9'), metadata={'h': 5.681951615025145e-227, 'A1': 61126, 'uhUhLEEMfeC_kN': 2147483647, 'weF': 'pSP', 'B3DSaP': False, '6H533K': 1.192092896e-07}, dimension=1915, dtype=<class 'numpy.float32'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d202d0>), new_metadata={'xVW09xUpDZA': 31734, E 'g': 1.1, E 'n1dUTalF-MY': -1000000.0, E 'y': 'G3EtXTZ', E 'ugXZ_hK': 5494}) E state.list_collections_with_limit_offset(limit=4, offset=5) E state.modify_coll(coll=v16, new_metadata={'giC': -6.103515625e-05, E '45227B': '65', E 'Uy6KZu6abCD9Z': -72, E 'r3': -41479, E 'pO4': -0.0, E 'Bpyj': -675165.8688164671, E '8-tD9nJd': 4.8728578364902235e-208, E '7DjCkbusc-K': 'vc94', E '3': 'd71IL'}, new_name='OF5F0MzbQg\n') E state.list_collections_with_limit_offset(limit=4, offset=4) E (v17,) = state.modify_coll(coll=v15, new_metadata={'L35J2S': 'K0l026'}, new_name='Ai1\n') E (v18,) = state.get_or_create_coll(coll=v13, new_metadata=None) E state.list_collections_with_limit_offset(limit=3, offset=1) E (v19,) = state.modify_coll(coll=v14, new_metadata=None, new_name='F0K570\n') E (v20,) = state.get_or_create_coll(coll=Collection(name='Ad5m003\n', id=UUID('5e23b560-7f62-4f14-bf80-93f5ff4e906a'), metadata={'3M': 'q_'}, dimension=57, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d5aad0>), new_metadata={'_000': 852410}) E (v21,) = state.get_or_create_coll(coll=v14, new_metadata=None) E state.list_collections_with_limit_offset(limit=4, offset=1) E (v22,) = state.modify_coll(coll=v21, new_metadata=None, new_name=None) E (v23,) = state.modify_coll(coll=v22, new_metadata=None, new_name=None) E state.list_collections_with_limit_offset(limit=1, offset=1) E state.get_or_create_coll(coll=Collection(name='VS0QGh', id=UUID('ca92837d-3425-436c-bf11-dba969f0f8c7'), metadata=None, dimension=326, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6f4d0>), new_metadata=None) E state.teardown() ``` The problem starts in v13 where we create a new collection named `C1030` In v15 we modify the collection `C1030` and rename it to `OF5F0MzbQg\n` In v16 we create a new collection named `VS0QGh` We try to modify the collection `VS0QGh` and rename it to `OF5F0MzbQg\n` which is the same name as the collection `C1030` which is fails in the and we return empty from the rule. However we have already updated the model: ```python if new_metadata is not None: if len(new_metadata) == 0: with pytest.raises(Exception): c = self.api.get_or_create_collection( name=coll.name, metadata=new_metadata, embedding_function=coll.embedding_function, ) return multiple() coll.metadata = new_metadata self.set_model(coll.name, coll.metadata) # <--- here we update the metadata if new_name is not None: if new_name in self.model and new_name != coll.name: with pytest.raises(Exception): # <--- fail here to rename the collection to `OF5F0MzbQg\n` c.modify(metadata=new_metadata, name=new_name) return multiple() prev_metadata = self.model[coll.name] self.delete_from_model(coll.name) self.set_model(new_name, prev_metadata) coll.name = new_name ``` then in `E state.get_or_create_coll(coll=Collection(name='VS0QGh', id=UUID('ca92837d-3425-436c-bf11-dba969f0f8c7'), metadata=None, dimension=326, dtype=<class 'numpy.float16'>, topic='topic', known_metadata_keys={}, known_document_keywords=[], has_documents=True, has_embeddings=False, embedding_function=<chromadb.test.property.strategies.hashing_embedding_function object at 0x7fd181d6f4d0>), new_metadata=None)` We try to create or get collection `VS0QGh` which exists in API and in state. Metadata and new metadata are None so we fall into case 0. Existing collection with old metadata and but we take the metadata from model which has been updated after the failure above. So we have API version of the metadata and partly updated model metadata, which causes the failure.
atroyn
added a commit
to csbasil/chroma
that referenced
this pull request
Apr 3, 2024
## Description of changes Chroma did not support Python 3.12 because of our dependency on the ONNX runtime for our default embedding function. As of version 1.17.0, ONNX supports python 3.12: microsoft/onnxruntime#17842 (comment) This already automatically fixes the issue for Chroma users when they install the new version of ONNX / reinstall Chroma. This PR is just to update our test and release actions to also use python 3.12. ## Test plan These are changes to test workers. ## Documentation Changes N/A
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Description of changes
Chroma did not support Python 3.12 because of our dependency on the ONNX runtime for our default embedding function. As of version 1.17.0, ONNX supports python 3.12: microsoft/onnxruntime#17842 (comment)
This already automatically fixes the issue for Chroma users when they install the new version of ONNX / reinstall Chroma. This PR is just to update our test and release actions to also use python 3.12.
Test plan
These are changes to test workers.
Documentation Changes
N/A