This project demonstrates image segmentation using the Mask R-CNN model.
-
Clone the repository:
git clonec https://github.com/matterport/Mask_RCNN.git cd Mask_RCNN
-
Install dependencies:
pip install -r requirements.txt
-
Download pre-trained weights:
wget https://github.com/matterport/Mask_RCNN/releases
-
Run the Jupyter Notebook:
jupyter notebook Image_segmentation.ipynb
-
Configuration:
- Set up the environment and import necessary libraries.
- Configure the Mask R-CNN model for inference.
- Load pre-trained weights for the COCO dataset.
- Define class names for the COCO dataset.
-
Visualization:
- Visualize the model's predictions on sample images.
The notebook demonstrates how to use Mask R-CNN for image segmentation, including loading pre-trained weights and visualizing predictions.
- Mask R-CNN paper
- COCO dataset