Skip to content

Commit

Permalink
Adds decaf prime-order group.
Browse files Browse the repository at this point in the history
Squashed commit of the following:

commit ec347f5
Author: armfazh <[email protected]>
Date:   Fri Jul 24 15:28:34 2020 -0700

    Adding decaf group.

commit 796b37e
Author: armfazh <[email protected]>
Date:   Wed Jul 22 19:44:07 2020 -0700

    Updates internal packages of Ed448.

commit f5957e7
Author: armfazh <[email protected]>
Date:   Wed Jul 22 19:11:15 2020 -0700

    Updating Decaf documentation.

commit 6f573e6
Author: armfazh <[email protected]>
Date:   Wed Jul 22 13:56:12 2020 -0700

    Updating documentation of ted448 internal package.

commit 7e80bfc
Author: armfazh <[email protected]>
Date:   Wed Jun 10 01:56:31 2020 -0700

    Adapting ed448 for using the internal ted448 package.

commit 44ce6c5
Author: armfazh <[email protected]>
Date:   Tue Jun 9 23:36:17 2020 -0700

    ted448 point public fields.

commit 13dd30d
Author: armfazh <[email protected]>
Date:   Tue Jun 9 20:32:32 2020 -0700

    Moving twist implementation to an internal package.

commit 4cdcb71
Author: armfazh <[email protected]>
Date:   Mon Jun 1 01:30:22 2020 -0700

    Solving scalar constant-time operations.

commit 26b9ea4
Author: armfazh <[email protected]>
Date:   Thu May 21 09:21:36 2020 -0700

    Review comments on formulas.

commit ff821b5
Author: armfazh <[email protected]>
Date:   Tue May 19 16:54:36 2020 -0700

    Adding tests for detecting decaf/point invalid encodings.

commit 3881ea8
Author: armfazh <[email protected]>
Date:   Fri May 15 15:13:53 2020 -0700

    One test for decaf, unmarshaling straight-line code, and check for errors.

commit 9b048c0
Author: armfazh <[email protected]>
Date:   Thu May 14 18:12:57 2020 -0700

    Updating interface for decaf and curve.

commit a99153c
Author: armfazh <[email protected]>
Date:   Thu May 14 16:10:04 2020 -0700

    Adding goldilocks documentation.

commit a62d6bd
Author: armfazh <[email protected]>
Date:   Thu May 14 14:15:02 2020 -0700

    Adding decaf v1.1 and kat tests.

commit c72bdfa
Author: armfazh <[email protected]>
Date:   Wed May 13 13:30:11 2020 -0700

    Removing non-used fp functions.

commit d4fc865
Author: armfazh <[email protected]>
Date:   Tue May 12 11:47:57 2020 -0700

    Adding some helper functions.

commit 6173c83
Author: armfazh <[email protected]>
Date:   Tue May 12 05:15:55 2020 -0700

    Decaf decoding working. More tests needed.

commit daa36c1
Author: armfazh <[email protected]>
Date:   Mon May 11 16:16:16 2020 -0700

    Decaf encoding is working, except by the choice of generator.

commit 8933f6c
Author: armfazh <[email protected]>
Date:   Thu May 7 01:19:47 2020 -0700

    Decaf encoding requires cannon sqrt.

commit 9479b45
Author: armfazh <[email protected]>
Date:   Wed Apr 29 14:51:21 2020 -0700

    Adding support for decaf quotient group.
  • Loading branch information
armfazh committed Jul 24, 2020
1 parent d004263 commit 87b9a72
Show file tree
Hide file tree
Showing 31 changed files with 1,769 additions and 1,138 deletions.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,11 +35,12 @@ Version numbers are [Semvers](https://semver.org/). We release a minor version f
| PQ Key Exchange | SIDH | SIDH provide key exchange mechanisms using ephemeral keys. | Post-quantum key exchange in TLS |
| PQ Key Exchange | cSIDH | Isogeny based drop-in replacement for Diffie–Hellman | Post-Quantum Key exchange. |
| PQ KEM | SIKE | SIKE is a key encapsulation mechanism (KEM). | Post-quantum key exchange in TLS |
| PQ Digital Signatures | Dilithium, Hybrid modes | Lattice (Module LWE) based signature scheme | Post-Quantum PKI |
| Key Exchange | X25519, X448 | RFC-7748 provides new key exchange mechanisms based on Montgomery elliptic curves. | TLS 1.3. Secure Shell. |
| Key Exchange | FourQ | One of the fastest elliptic curves at 128-bit security level. | Experimental for key agreement and digital signatures. |
| Key Exchange / Digital signatures | P-384 | Our optimizations reduce the burden when moving from P-256 to P-384. | ECDSA and ECDH using Suite B at top secret level. |
| Digital Signatures | Ed25519, Ed448 | RFC-8032 provides new signature schemes based on Edwards curves. | Digital certificates and authentication. |
| PQ Digital Signatures | Dilithium, Hybrid modes | Lattice (Module LWE) based signature scheme | Post-Quantum PKI |
| Groups | Decaf | Prime-order groups. | Protocols based on the Discrete Logarithm Problem. |

### Work in Progress

Expand Down
28 changes: 28 additions & 0 deletions ecc/decaf/constants.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
package decaf

import (
"errors"

fp "github.com/cloudflare/circl/math/fp448"
)

// DecafEncodingSize is the size (in bytes) of an encoded Decaf element.
const EncodingSize = fp.Size

// ErrInvalidDecoding alerts of an error during decoding a point.
var ErrInvalidDecoding = errors.New("invalid decoding")

var (
// aMinusD is paramA-paramD = (-1)-(-39082) = 39081.
aMinusD = fp.Elt{0xa9, 0x98}
// sqrtAMinusD is the smallest root of sqrt(paramA-paramD) = sqrt(39081).
sqrtAMinusD = fp.Elt{
0x36, 0x27, 0x57, 0x45, 0x0f, 0xef, 0x42, 0x96,
0x52, 0xce, 0x20, 0xaa, 0xf6, 0x7b, 0x33, 0x60,
0xd2, 0xde, 0x6e, 0xfd, 0xf4, 0x66, 0x9a, 0x83,
0xba, 0x14, 0x8c, 0x96, 0x80, 0xd7, 0xa2, 0x64,
0x4b, 0xd5, 0xb8, 0xa5, 0xb8, 0xa7, 0xf1, 0xa1,
0xa0, 0x6a, 0xa2, 0x2f, 0x72, 0x8d, 0xf6, 0x3b,
0x68, 0xf7, 0x24, 0xeb, 0xfb, 0x62, 0xd9, 0x22,
}
)
191 changes: 191 additions & 0 deletions ecc/decaf/decaf.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
// Package decaf provides a prime-order group derived from a quotient of
// Edwards curves.
//
// Decaf Group
//
// Decaf (3) is a prime-order group constructed as a quotient of groups. A Decaf
// element can be represented by any point in the coset P+J[2], where J is a
// Jacobi quartic curve and J[2] are its 2-torsion points.
// Since P+J[2] has four points, Decaf specifies rules to choose one canonical
// representative, which has a unique encoding. Two representations are
// equivalent if they belong to the same coset.
//
// The types Elt and Scalar provide methods to perform arithmetic operations on
// the Decaf group.
//
// Version
//
// This implementation uses Decaf v1.0 of the encoding (see (4,5) for a complete
// specification).
//
// References
//
// (1) https://www.shiftleft.org/papers/goldilocks
//
// (2) https://tools.ietf.org/html/rfc7748
//
// (3) https://doi.org/10.1007/978-3-662-47989-6_34 and https://www.shiftleft.org/papers/decaf
//
// (4) https://sourceforge.net/p/ed448goldilocks/code/ci/v1.0/tree/
//
// (5) https://mailarchive.ietf.org/arch/msg/cfrg/S4YUTt_5eD4kwYbDuhEK0tXT1aM/
package decaf

import (
"unsafe"

"github.com/cloudflare/circl/internal/ted448"
fp "github.com/cloudflare/circl/math/fp448"
)

// Decaf v1.0 of the encoding.
const Version = "v1.0"

// Elt is an element of the Decaf group. It must be always initialized using
// one of the Decaf functions.
type Elt struct{ p ted448.Point }

// Scalar represents a positive integer stored in little-endian order.
type Scalar = ted448.Scalar

func (e Elt) String() string { return e.p.String() }

// IsValid returns True if a is a valid element of the group.
func IsValid(a *Elt) bool { return ted448.IsOnCurve(&a.p) }

// Identity returns the identity element of the group.
func Identity() *Elt { return &Elt{ted448.Identity()} }

// Generator returns the generator element of the group.
func Generator() *Elt { return &Elt{ted448.Generator()} }

// Order returns a scalar with the order of the group.
func Order() Scalar { return ted448.Order() }

// Neg calculates c=-a, where - is the inverse of the group operation.
func Neg(c, a *Elt) { c.p = a.p; c.p.Neg() }

// Add calculates c=a+b, where + is the group operation.
func Add(c, a, b *Elt) { q := a.p; q.Add(&b.p); c.p = q }

// Double calculates c=a+a, where + is the group operation.
func Double(c, a *Elt) { c.p = a.p; c.p.Double() }

// Mul calculates c=n*a, where * is scalar multiplication on the group.
func Mul(c *Elt, n *Scalar, a *Elt) { ted448.ScalarMult(&c.p, n, &a.p) }

// MulGen calculates c=n*g, where * is scalar multiplication on the group,
// and g is the generator of the group.
func MulGen(c *Elt, n *Scalar) { ted448.ScalarBaseMult(&c.p, n) }

// IsIdentity returns True if e is the identity of the group.
func (e *Elt) IsIdentity() bool { return fp.IsZero(&e.p.X) && !fp.IsZero(&e.p.Y) && !fp.IsZero(&e.p.Z) }

// IsEqual returns True if e=a, where = is an equivalence relation.
func (e *Elt) IsEqual(a *Elt) bool {
l, r := &fp.Elt{}, &fp.Elt{}
fp.Mul(l, &e.p.X, &a.p.Y)
fp.Mul(r, &a.p.X, &e.p.Y)
fp.Sub(l, l, r)
return fp.IsZero(l)
}

// UnmarshalBinary interprets the first EncodingSize bytes passed in data, and
// returns a Decaf element.
func (e *Elt) UnmarshalBinary(data []byte) error {
if len(data) < EncodingSize {
return ErrInvalidDecoding
}

s := &fp.Elt{}
copy(s[:], data[:EncodingSize])
p := fp.P()
isLessThanP := isLessThan(s[:], p[:])
isPositiveS := fp.Parity(s) == 0

den, num := &fp.Elt{}, &fp.Elt{}
isr, altx, t0 := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
x, y := &fp.Elt{}, &fp.Elt{}
one := fp.One()
paramD := ted448.ParamD()
fp.Sqr(t0, s) // t0 = s^2
fp.Sub(den, &one, t0) // den = 1 + a*s^2
fp.Add(y, &one, t0) // y = 1 - a*s^2
fp.Mul(num, t0, &paramD) // num = d*s^2
fp.Add(num, num, num) // = 2*d*s^2
fp.Add(num, num, num) // = 4*d*s^2
fp.Sqr(t0, den) // t0 = den^2 = (1 + a*s^2)^2
fp.Sub(num, t0, num) // num = den^2 - 4*d*s^2
fp.Mul(t0, t0, num) // t0 = den^2*num
isQR := fp.InvSqrt(isr, &one, t0) // isr = 1/(den*sqrt(num))
fp.Mul(altx, isr, den) // altx = isr*den
fp.Mul(altx, altx, s) // = s*isr*den
fp.Add(altx, altx, altx) // = 2*s*isr*den
fp.Mul(altx, altx, &sqrtAMinusD) // = 2*s*isr*den*sqrt(A-D)
isNegX := fp.Parity(altx) // isNeg = sgn(altx)
fp.Neg(t0, isr) // t0 = -isr
fp.Cmov(isr, t0, uint(isNegX)) // if altx is negative then isr = -isr
fp.Mul(t0, isr, den) // t0 = isr*den
fp.Mul(x, t0, isr) // x = isr^2*den
fp.Mul(x, x, num) // x = isr^2*den*num
fp.Mul(x, x, s) // x = s*isr^2*den*num
fp.Add(x, x, x) // x = 2*s*isr^2*den*num
fp.Mul(y, y, t0) // y = (1 - a*s^2)*isr*den

isValid := isPositiveS && isLessThanP && isQR
b := uint(*((*byte)(unsafe.Pointer(&isValid))))
fp.Cmov(&e.p.X, x, b)
fp.Cmov(&e.p.Y, y, b)
fp.Cmov(&e.p.Ta, x, b)
fp.Cmov(&e.p.Tb, y, b)
fp.Cmov(&e.p.Z, &one, b)
if !isValid {
return ErrInvalidDecoding
}
return nil
}

// MarshalBinary returns a unique encoding of the element e.
func (e *Elt) MarshalBinary() ([]byte, error) {
var encS [EncodingSize]byte
err := e.marshalBinary(encS[:])
return encS[:], err
}

func (e *Elt) marshalBinary(enc []byte) error {
x, ta, tb, z := &e.p.X, &e.p.Ta, &e.p.Tb, &e.p.Z
t, t2, s := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
one := fp.One()
fp.Mul(t, ta, tb) // t = ta*tb
t0, t1 := *x, *t // (t0,t1) = (x,t)
fp.AddSub(&t0, &t1) // (t0,t1) = (x+t,x-t)
fp.Mul(&t1, &t0, &t1) // t1 = num = (x+t)*(x-t) = x^2*(z^2-y^2)/z^2
fp.Mul(&t0, &t1, &aMinusD) // t0 = (a-d)*(x+t)*(x-t) = (a-d)*x^2*(z^2-y^2)/z^2
fp.Sqr(t2, x) // t2 = x^2
fp.Mul(&t0, &t0, t2) // t0 = x^2*(a-d)*(x+t)*(x-t) = (a-d)*x^4*(z^2-y^2)/z^2
fp.InvSqrt(&t0, &one, &t0) // t0 = isr = z/(x^2*sqrt((a-d)*(z^2-y^2)))
fp.Mul(&t1, &t1, &t0) // t1 = ratio = (z^2-y^2)/(z*sqrt((a-d)*(z^2-y^2)))
fp.Mul(t2, &t1, &sqrtAMinusD) // t2 = altx = sqrt((z^2-y^2))/z
isNeg := fp.Parity(t2) // isNeg = sgn(t2)
fp.Neg(t2, &t1) // t2 = -t1
fp.Cmov(&t1, t2, uint(isNeg)) // if t2 is negative then t1 = -t1
fp.Mul(s, &t1, z) // s = t1*z
fp.Sub(s, s, t) // s = t1*z - t
fp.Mul(s, s, x) // s = x*(t1*z - t)
fp.Mul(s, s, &t0) // s = isr*x*(t1*z - t)
fp.Mul(s, s, &aMinusD) // s = (a-d)*isr*x*(t1*z - t)
isNeg = fp.Parity(s) // isNeg = sgn(s)
fp.Neg(&t0, s) // t0 = -s
fp.Cmov(s, &t0, uint(isNeg)) // if s is negative then s = -s
return fp.ToBytes(enc[:], s)
}

// isLessThan returns true if 0 <= x < y, and assumes that slices are of the
// same length and are interpreted in little-endian order.
func isLessThan(x, y []byte) bool {
i := len(x) - 1
for i > 0 && x[i] == y[i] {
i--
}
return x[i] < y[i]
}
Loading

0 comments on commit 87b9a72

Please sign in to comment.