-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Tom
committed
Feb 18, 2022
1 parent
fb2c249
commit 63ae9e8
Showing
2 changed files
with
214 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
using SeaPearl | ||
using Random | ||
""" | ||
struct TsptwGeneratorFromRealData <: SeaPearl.AbstractModelGenerator | ||
This generator is a variant of the TsptwGenerator developped by Kim Rioux-Paradis based on real data to generate instances of size less than or equal to 500. | ||
However, this generator cannot be used exactly like TsptwGenerator since we do not have access to the absolute positions of the nodes but only to the distance matrix. Therefore it is not possible to fill the model.adhocInfos exactly as TsptwGenerator does. It is therefore not possible to reuse the functions using its information (TsptwReward for example) | ||
However, there are several methods to generate an approximation (up to a rotation) of this position matrix. See : https://math.stackexchange.com/questions/156161/finding-the-coordinates-of-points-from-distance-matrix | ||
""" | ||
struct TsptwGeneratorFromRealData <: SeaPearl.AbstractModelGenerator | ||
n_city::Int | ||
max_tw_gap::Int # Maximum time windows gap allowed between the cities constituing the feasible tour | ||
max_tw::Int # Maximum time windows upper bound | ||
pourcent_max_tw::Int64 | ||
file::String | ||
pruning::Bool | ||
end | ||
|
||
TsptwGeneratorFromRealData(n_city::Int, max_tw_gap::Int, max_tw::Int, pourcent_max_tw::Int64, file::String) = TsptwGeneratorFromRealData(n_city, max_tw_gap, max_tw, pourcent_max_tw, file, true) | ||
|
||
""" | ||
fill_with_generator!(cpmodel::CPModel, gen::TsptwGeneratorFromRealData)::CPModel | ||
Fill a CPModel with the variables and constraints generated. We fill it directly instead of | ||
creating temporary files for efficiency purpose ! | ||
Basicaly finds positions with a uniform distributions, then sets the time windows by creating a feasible tour and adding | ||
some randomness by using uniform distributions with gap and the length of the time windows. | ||
""" | ||
function fill_with_generator!(cpmodel::SeaPearl.CPModel, gen::TsptwGeneratorFromRealData; seed=nothing, dist = nothing, timeWindows=nothing) | ||
if !isnothing(seed) | ||
Random.seed!(seed) | ||
end | ||
lines = "" | ||
open(gen.file, "r") do openedFile | ||
input = read(openedFile, String) | ||
lines = split(input, '\n') | ||
end | ||
max_city = parse(Int64, lines[1]) | ||
distance = zeros(Int64, max_city, max_city) | ||
timeWindow = zeros(Int64, max_city, 2) | ||
for i in 1:max_city | ||
di = split(lines[i + 1], " ") | ||
for j in 1:max_city | ||
distance[i,j] = parse(Int64, di[j]) | ||
end | ||
end | ||
|
||
for i in 1:max_city | ||
ti = split(lines[i + 1 + max_city], " ") | ||
ti = filter!(e->e≠"",ti) | ||
timeWindow[i,1] = parse(Int64, ti[1]) | ||
timeWindow[i,2] = parse(Int64, ti[2]) | ||
end | ||
|
||
perm = shuffle(1:max_city) | ||
randomCity = randperm!(perm)[1:gen.n_city] | ||
dist = zeros(Int64, gen.n_city, gen.n_city) | ||
timeWindows = zeros(Int64, gen.n_city, 2) | ||
maxTW = floor(Int, gen.pourcent_max_tw * gen.n_city / 100) | ||
for i in 1:gen.n_city | ||
for j in 1:gen.n_city | ||
dist[i, j] = distance[randomCity[i], randomCity[j]] | ||
end | ||
end | ||
maxValue = sum(dist[i,j] for i in 1:gen.n_city, j in 1:gen.n_city) | ||
|
||
for i in 1:maxTW | ||
timeWindows[i, 1] = timeWindow[randomCity[i], 1] | ||
timeWindows[i, 2] = timeWindow[randomCity[i], 2] | ||
end | ||
for i in maxTW+1:gen.n_city | ||
timeWindows[i, 1] = 0 | ||
timeWindows[i, 2] = maxValue | ||
end | ||
|
||
random_solution = [1, shuffle(Vector(2:gen.n_city))] | ||
|
||
#TODO need to find a way to retrieve coordinates of points from | ||
#x_pos = zeros(gen.n_city) | ||
#y_pos = zeros(gen.n_city) | ||
#grid_size = 0 | ||
#cpmodel.adhocInfo = dist, timeWindows, hcat(x_pos, y_pos), grid_size | ||
|
||
max_upper_tw = maxValue | ||
|
||
### Filling the CPModel | ||
## Creating variables | ||
m = [SeaPearl.IntSetVar(1, gen.n_city, "m_"*string(i), cpmodel.trailer) for i in 1:gen.n_city] # Remaining cities to visit | ||
v = [SeaPearl.IntVar(1, gen.n_city, "v_"*string(i), cpmodel.trailer) for i in 1:gen.n_city] # Last customer | ||
t = [SeaPearl.IntVar(0, max_upper_tw, "t_"*string(i), cpmodel.trailer) for i in 1:gen.n_city] # Current time | ||
a = [SeaPearl.IntVar(1, gen.n_city, "a_"*string(i), cpmodel.trailer) for i in 1:(gen.n_city-1)] # Action: serving customer a_i at stage i | ||
c = [SeaPearl.IntVar(0, max_upper_tw, "c_"*string(i), cpmodel.trailer) for i in 1:gen.n_city] # Current cost | ||
total_cost = SeaPearl.IntVar(0, max_upper_tw, "total_cost", cpmodel.trailer) | ||
SeaPearl.addVariable!(cpmodel, total_cost; branchable=false) | ||
for i in 1:gen.n_city | ||
SeaPearl.addVariable!(cpmodel, m[i]; branchable=false) | ||
SeaPearl.addVariable!(cpmodel, v[i]; branchable=false) | ||
SeaPearl.addVariable!(cpmodel, t[i]; branchable=false) | ||
if i != gen.n_city | ||
SeaPearl.addVariable!(cpmodel, a[i]; branchable=true) | ||
end | ||
SeaPearl.addVariable!(cpmodel, c[i]; branchable=false) | ||
end | ||
|
||
|
||
## Intermediaries | ||
d = [SeaPearl.IntVar(0, Base.maximum(dist), "d_"*string(i), cpmodel.trailer) for i in 1:gen.n_city] # d[v_i, a_i] | ||
lowers = [SeaPearl.IntVar(0, max_upper_tw, "td_"*string(i), cpmodel.trailer) for i in 1:(gen.n_city-1)] # t + d[v_i, a_i] | ||
lower_ai = [SeaPearl.IntVar(0, max_upper_tw, "lower_ai_"*string(i), cpmodel.trailer) for i in 1:(gen.n_city-1)] # timeWindows[i, 1] | ||
upper_tw_minus_1 = [SeaPearl.IntVar(timeWindows[i, 2] - 1, timeWindows[i, 2] - 1, "upper_tw_"*string(i), cpmodel.trailer) for i in 1:gen.n_city] # timeWindows[i, 2] + 1 | ||
one_var = SeaPearl.IntVar(1, 1, "one", cpmodel.trailer) | ||
upper_ai = [SeaPearl.IntVar(0, max_upper_tw, "upper_ai_"*string(i), cpmodel.trailer) for i in 1:(gen.n_city-1)] # timeWindows[a_i, 2] | ||
j_index = [SeaPearl.IntVarViewMul(one_var, j, "index_"*string(j)) for j in 1:gen.n_city] | ||
|
||
still_time = Array{SeaPearl.BoolVar, 2}(undef, (gen.n_city, gen.n_city)) | ||
j_in_m_i = Array{SeaPearl.BoolVar, 2}(undef, (gen.n_city, gen.n_city)) | ||
for i in 1:gen.n_city | ||
for j in 1:gen.n_city | ||
still_time[i, j] = SeaPearl.BoolVar("s_t_"*string(i)*"_"*string(j), cpmodel.trailer) # t_i < upper_bound[j] | ||
j_in_m_i[i, j] = SeaPearl.BoolVar(string(j)*"_in_m_"*string(i), cpmodel.trailer) # t_i < upper_bound[j] | ||
end | ||
end | ||
|
||
SeaPearl.addVariable!(cpmodel, one_var; branchable=false) | ||
for i in 1:gen.n_city | ||
SeaPearl.addVariable!(cpmodel, d[i]; branchable=false) | ||
SeaPearl.addVariable!(cpmodel, upper_tw_minus_1[i]; branchable=false) | ||
if gen.pruning | ||
SeaPearl.addVariable!(cpmodel, j_index[i]; branchable=false) | ||
end | ||
if i != gen.n_city | ||
SeaPearl.addVariable!(cpmodel, lower_ai[i]; branchable=false) | ||
SeaPearl.addVariable!(cpmodel, upper_ai[i]; branchable=false) | ||
SeaPearl.addVariable!(cpmodel, lowers[i]; branchable=false) | ||
end | ||
for j in 1:gen.n_city | ||
if gen.pruning | ||
SeaPearl.addVariable!(cpmodel, j_in_m_i[i, j]; branchable=false) | ||
SeaPearl.addVariable!(cpmodel, still_time[i, j]; branchable=false) | ||
end | ||
end | ||
end | ||
|
||
## Constraints | ||
# Initialization | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.EqualConstant(t[1], 0, cpmodel.trailer)) | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.EqualConstant(v[1], 1, cpmodel.trailer)) | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.EqualConstant(c[1], 0, cpmodel.trailer)) | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.SetEqualConstant(m[1], Set{Int}(collect(2:gen.n_city)), cpmodel.trailer)) | ||
|
||
# Variable definition | ||
for i in 1:(gen.n_city - 1) | ||
# m[i+1] = m[i] \ a[i] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.SetDiffSingleton(m[i+1], m[i], a[i], cpmodel.trailer)) | ||
|
||
# v[i+1] = a[i] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.Equal(v[i+1], a[i], cpmodel.trailer)) | ||
|
||
# t[i+1] = max(lowers[i], lower_ai[i]) | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.BinaryMaximumBC(t[i+1], lowers[i], lower_ai[i], cpmodel.trailer)) | ||
|
||
# c[i + 1] = c[i] + d[i] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.SumToZero(SeaPearl.AbstractIntVar[c[i], d[i], SeaPearl.IntVarViewOpposite(c[i+1], "-c_"*string(i+1))], cpmodel.trailer)) | ||
|
||
# upper_ai = timeWindows[a_i, 2] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.Element1D(timeWindows[:, 2], a[i], upper_ai[i], cpmodel.trailer)) | ||
|
||
# lower_ai = timeWindows[a_i, 1] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.Element1D(timeWindows[:, 1], a[i], lower_ai[i], cpmodel.trailer)) | ||
|
||
# d[i] = dist[v[i], a[i]] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.Element2D(dist, v[i], a[i], d[i], cpmodel.trailer)) | ||
# lowers[i] = t[i] + d[i] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.SumToZero(SeaPearl.AbstractIntVar[t[i], d[i], SeaPearl.IntVarViewOpposite(lowers[i], "-td_"*string(i))], cpmodel.trailer)) | ||
end | ||
# d[n] = dist[a[n-1], 1] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.Element2D(dist, a[gen.n_city-1], one_var, d[gen.n_city], cpmodel.trailer)) | ||
# total_cost = c[n] + d[n] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.SumToZero(SeaPearl.AbstractIntVar[c[gen.n_city], d[gen.n_city], SeaPearl.IntVarViewOpposite(total_cost, "-total_cost")], cpmodel.trailer)) | ||
|
||
# Validity constraints | ||
for i in 1:(gen.n_city - 1) | ||
# a[i] ∈ m[i] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.InSet(a[i], m[i], cpmodel.trailer)) | ||
|
||
# lowers[i] <= upper_ai | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.LessOrEqual(lowers[i], upper_ai[i], cpmodel.trailer)) | ||
end | ||
|
||
# Pruning constraints | ||
if gen.pruning | ||
for i in 1:gen.n_city | ||
for j in 1:gen.n_city | ||
# still_time[i, j] = t[i] < upper_tw[j] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.isLessOrEqual(still_time[i, j], t[i], upper_tw_minus_1[j], cpmodel.trailer)) | ||
|
||
# j_in_m_i[i, j] = j_index[j] ∈ m[i] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.ReifiedInSet(j_index[j], m[i], j_in_m_i[i, j], cpmodel.trailer)) | ||
|
||
# t[i] >= upper[j] ⟹ j ∉ m[i] | ||
# ≡ t[i] < upper[j] ⋁ j ∉ m[i] | ||
# ≡ still_time[i, j] ⋁ ¬j_in_m_i[i, j] | ||
SeaPearl.addConstraint!(cpmodel, SeaPearl.BinaryOr(still_time[i, j], SeaPearl.BoolVarViewNot(j_in_m_i[i, j], "¬"*string(j)*"_in_m_"*string(i)), cpmodel.trailer)) | ||
end | ||
end | ||
end | ||
|
||
# Objective function: min total_cost | ||
SeaPearl.addObjective!(cpmodel,total_cost) | ||
return dist, timeWindows | ||
end |