Skip to content

An experimental package for loading and saving object in Python Pickle format.

License

Notifications You must be signed in to change notification settings

cossio/Pickle.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pickle.jl

Build status codecov

An experimental package for loading and saving object in Python Pickle and Torch Pickle format.

Supports

Load

  1. basic builtin types. e.g. `Integer`, `String`, `Tuple`, `Dict`, `Vector`, `Set` ...
    julia> Pickle.load(open("test.pkl"))
    Dict{Any,Any} with 6 entries:
      "int"   => 0
      "str"   => "Julia!"
      "bytes" => UInt8[0x31, 0x32, 0x33, 0x34]
      "tuple" => (1, 2.0, "3", UInt8[0x34])
      "bool"  => true
      "float" => 3.14159
  1. some basic support of loading numpy.array and scipy.sparse.csr_matrix with Pickle.npyload("data.pkl").

  2. framework for easily analyze and implement required translation methods. For those data which are not able to restore directly will be stored in a Defer object which is similar to Expr but is mutable.

julia> load("test/test_pkl/test-np.pkl")
Defer(:build, Defer(:reduce, Defer(:numpy.core.multiarray._reconstruct), Defer(:numpy.ndarray), (0,), UInt8[0x62]),
 (1, (3, 5), Defer(:build, Defer(:reduce, Defer(:numpy.dtype), f8, 0, 1), (3, "<", nothing, nothing, nothing, -1, -
1, 0)), false, UInt8[0x29, 0x0f, 0x9c, 0x3b, 0x11, 0x5a, 0xbf, 0x3f, 0x29, 0xa6    0xb8, 0x3f, 0x6b, 0x4a, 0x31, 0
xab, 0x2b, 0xc5, 0xf2, 0x3f]))

julia> dump(ans)
Pickle.Defer
  head: Symbol build
  args: Array{Any}((2,))
    1: Pickle.Defer
      head: Symbol reduce
      args: Array{Any}((4,))
        1: Pickle.Defer
          head: Symbol numpy.core.multiarray._reconstruct
          args: Array{Any}((0,))
        2: Pickle.Defer
          head: Symbol numpy.ndarray
          args: Array{Any}((0,))
        3: Tuple{Int64}
          1: Int64 0
        4: Array{UInt8}((1,)) UInt8[0x62]
    2: Tuple{Int64,Tuple{Int64,Int64},Pickle.Defer,Bool,Array{UInt8,1}}
      1: Int64 1
      2: Tuple{Int64,Int64}
        1: Int64 3
        2: Int64 5
      3: Pickle.Defer
        head: Symbol build
        args: Array{Any}((2,))
          1: Pickle.Defer
            head: Symbol reduce
            args: Array{Any}((4,))
              1: Pickle.Defer
                head: Symbol numpy.dtype
                args: Array{Any}((0,))
              2: String "f8"
              3: Int64 0
              4: Int64 1
          2: Tuple{Int64,String,Nothing,Nothing,Nothing,Int64,Int64,Int64}
            1: Int64 3
            2: String "<"
            3: Nothing nothing
            4: Nothing nothing
            5: Nothing nothing
            6: Int64 -1
            7: Int64 -1
            8: Int64 0
      4: Bool false
      5: Array{UInt8}((120,)) UInt8[0x29, 0x0f, 0x9c, 0x3b, 0x11, 0x5a, 0xbf, 0x3f, 0x29, 0xa6    0xb8, 0x3f, 0x6b
, 0x4a, 0x31, 0xab, 0x2b, 0xc5, 0xf2, 0x3f]

Store

  1. basic builtin types. e.g. `Integer`, `String`, `Tuple`, `Dict`, `Vector`, `Set` ...
julia> x
Dict{Any,Any} with 9 entries:
  "int"    => 42
  "list"   => Any["February", 14, 2012]
  "str"    => "Julia!"
  "set"    => Set(Any[2, 3, 21, 12, 1])
  "bigint" => 1234567890987654321012345678909876543210
  "bytes"  => UInt8[0x31, 0x32, 0x33, 0x34]
  "tuple"  => (1, 2.0, "3", UInt8[0x34])
  "bool"   => Dict{Any,Any}(false=>true,true=>false)
  "float"  => 3.14159

julia> store("./test.pkl", x)

julia> stores(x)
"\x80\x04}\x94(\x8c\x03int\x94K*\x8c\x04list\x94]\x94(\x8c\bFebruary\x94K\x0eM\xdc\ae\x8c\x03str\x94\x8c\x06Julia!\x94\x8c\x03set\x94\x8f\x94(K\x02K\x03K\x15K\fK\x01\x90\x8c\x06bigint\x94\x8a\x11\xea\x1e\xd9Z7\xff\xad9[e;\xa9\x80 ɠ\x03\x8c\x05bytes\x94C\x041234\x8c\x05tuple\x94(K\x01G@\0\0\0\0\0\0\0\x8c\x013\x94C\x014t\x94\x8c\x04bool\x94}\x94(\x89\x88\x88\x89u\x8c\x05float\x94G@\t!\xfbM\x12\xd8Ju."

julia> load("./test.pkl")
Dict{Any,Any} with 9 entries:
  "int"    => 42
  "list"   => Any["February", 14, 2012]
  "str"    => "Julia!"
  "set"    => Set(Any[2, 3, 21, 12, 1])
  "bigint" => 1234567890987654321012345678909876543210
  "bytes"  => UInt8[0x31, 0x32, 0x33, 0x34]
  "tuple"  => (1, 2.0, "3", UInt8[0x34])
  "bool"   => Dict{Any,Any}(false=>true,true=>false)
  "float"  => 3.14159

Pickle.Torch

We also support loading/saving the tensor data from/for pytorch.

julia> Pickle.Torch.THsave("mydata.bin", [randn(3,5), randn(5)])

julia> Pickle.Torch.THload("mydata.bin")
2-element Array{Any,1}:
 [1.5106877710095366 -1.1454729135625932  2.06558662039955 -1.5367586535984377; 0.039481538567394656 -0.32939192495490544  1.3092722093574312 -2.008938993198881; -1.208358021687811 1.207098188115399  0.40730876859947734 1.6270781822957923]
 [-0.5909715360681883, -0.0948081699846433, -0.17734064360419854, 0.43085740457102734, -0.48091537835876497]

About

An experimental package for loading and saving object in Python Pickle format.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%