Skip to content

david26694/sktools

Repository files navigation

sktools

Documentation Status https://static.pepy.tech/personalized-badge/sktools?period=total&units=international_system&left_color=black&right_color=brightgreen&left_text=Downloads

sktools provides tools to extend sklearn, like several feature engineering based transformers.

Installation

To install sktools, run this command in your terminal:

$ pip install sktools

Documentation

Can be found in https://sktools.readthedocs.io

Usage

from sktools import IsEmptyExtractor

from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

...

mod = Pipeline([
    ("impute-features", IsEmptyExtractor()),
    ("model", LogisticRegression())
])

...

Features

Here's a list of features that sktools currently offers:

  • sktools.encoders.NestedTargetEncoder performs target encoding suited for variables with nesting.
  • sktools.encoders.QuantileEncoder performs target aggregation using a quantile instead of the mean.
  • sktools.preprocessing.CyclicFeaturizer converts numeric to cyclical features via sine and cosine transformations.
  • sktools.impute.IsEmptyExtractor creates binary variables indicating if there are missing values.
  • sktools.matrix_denser.MatrixDenser transformer that converts sparse matrices to dense.
  • sktools.quantilegroups.GroupedQuantileTransformer creates quantiles of a feature by group.
  • sktools.quantilegroups.PercentileGroupFeaturizer creates features regarding how an instance compares with a quantile of its group.
  • sktools.quantilegroups.MeanGroupFeaturizer creates features regarding how an instance compares with the mean of its group.
  • sktools.selectors.TypeSelector gets variables matching a type.
  • sktools.selectors.ItemsSelector allows to manually choose some variables.
  • sktools.ensemble.MedianForestRegressor applies the median instead of the mean when aggregating trees predictions.
  • sktools.linear_model.QuantileRegression sklearn style wrapper for quantile regression.
  • sktools.model_selection.BootstrapFold bootstrap cross-validator.
  • sktools.GradientBoostingFeatureGenerator Automated feature generation through gradient boosting.

Contributing

Fork/clone, in a fresh environment, run:

$ pip install -e ".[dev]"

To check if the unit tests are ok, run

$ make test

License

MIT license

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

About

Helpers for scikit learn

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published