Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Convert information into dict #752

Open
wants to merge 23 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions .changes/unreleased/Under the Hood-20230508-222313.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
kind: Under the Hood
body: Convert information into dict
time: 2023-05-08T22:23:13.704302+02:00
custom:
Author: Fokko
Issue: "751"
200 changes: 109 additions & 91 deletions dbt/adapters/spark/impl.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,14 @@ class SparkConfig(AdapterConfig):
merge_update_columns: Optional[str] = None


@dataclass(frozen=True)
class RelationInfo:
table_schema: str
table_name: str
columns: List[Tuple[str, str]]
properties: Dict[str, str]


class SparkAdapter(SQLAdapter):
COLUMN_NAMES = (
"table_database",
Expand All @@ -81,9 +89,7 @@ class SparkAdapter(SQLAdapter):
"stats:rows:description",
"stats:rows:include",
)
INFORMATION_COLUMNS_REGEX = re.compile(r"^ \|-- (.*): (.*) \(nullable = (.*)\b", re.MULTILINE)
INFORMATION_OWNER_REGEX = re.compile(r"^Owner: (.*)$", re.MULTILINE)
INFORMATION_STATISTICS_REGEX = re.compile(r"^Statistics: (.*)$", re.MULTILINE)
INFORMATION_COLUMN_REGEX = re.compile(r"[ | ]* \|-- (.*)\: (.*) \(nullable = (.*)\)")

HUDI_METADATA_COLUMNS = [
"_hoodie_commit_time",
Expand All @@ -102,7 +108,6 @@ class SparkAdapter(SQLAdapter):
}

Relation: TypeAlias = SparkRelation
RelationInfo = Tuple[str, str, str]
Column: TypeAlias = SparkColumn
ConnectionManager: TypeAlias = SparkConnectionManager
AdapterSpecificConfigs: TypeAlias = SparkConfig
Expand Down Expand Up @@ -138,13 +143,54 @@ def quote(self, identifier: str) -> str: # type: ignore
def _get_relation_information(self, row: agate.Row) -> RelationInfo:
"""relation info was fetched with SHOW TABLES EXTENDED"""
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Fokko : Could you extend the docstring to explain that the SHOW TABLES EXTENDED is preferred because fetching multiple tables at once is faster than fetching tables one by one. And, that we except the downside of parsing the |--- string given the performance gains?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Certainly. I've added a docstring. Let me know what you think

try:
_schema, name, _, information = row
table_properties = {}
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've changed this by directly separating the columns and properties when we parse the output. I think that makes more sense than splitting this later on because the SHOW TABLES EXTENDED output is different from the DESCRIBE TABLE EXTENDED output.

columns = []
_schema, name, _, information_blob = row
for line in information_blob.split("\n"):
if line:
if " |--" in line:
# A column
match = self.INFORMATION_COLUMN_REGEX.match(line)
if match:
columns.append((match[1], match[2]))
else:
logger.warning(f"Could not parse column: {line}")
else:
# A property
parts = line.split(": ", maxsplit=2)
if len(parts) == 2:
table_properties[parts[0]] = parts[1]
else:
logger.warning(f"Found invalid property: {line}")

except ValueError:
raise dbt.exceptions.DbtRuntimeError(
f'Invalid value from "show tables extended ...", got {len(row)} values, expected 4'
)

return _schema, name, information
return RelationInfo(_schema, name, columns, table_properties)

def _parse_describe_table_extended(
self, table_results: agate.Table
) -> Tuple[List[Tuple[str, str]], Dict[str, str]]:
# Wrap it in an iter, so we continue reading the properties from where we stopped reading columns
table_results_itr = iter(table_results)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🤩


# First the columns
columns = []
for info_row in table_results_itr:
if info_row[0] is None or info_row[0] == "" or info_row[0].startswith("#"):
break
columns.append((info_row[0], str(info_row[1])))

# Next all the properties
table_properties = {}
for info_row in table_results_itr:
info_type, info_value = info_row[:2]
if info_type is not None and not info_type.startswith("#") and info_type != "":
table_properties[info_type] = str(info_value)

return columns, table_properties

def _get_relation_information_using_describe(self, row: agate.Row) -> RelationInfo:
"""Relation info fetched using SHOW TABLES and an auxiliary DESCRIBE statement"""
Expand All @@ -164,41 +210,37 @@ def _get_relation_information_using_describe(self, row: agate.Row) -> RelationIn
logger.debug(f"Error while retrieving information about {table_name}: {e.msg}")
table_results = AttrDict()

information = ""
for info_row in table_results:
info_type, info_value, _ = info_row
if not info_type.startswith("#"):
information += f"{info_type}: {info_value}\n"

return _schema, name, information
columns, table_properties = self._parse_describe_table_extended(table_results)
return RelationInfo(_schema, name, columns, table_properties)

def _build_spark_relation_list(
self,
row_list: agate.Table,
relation_info_func: Callable[[agate.Row], RelationInfo],
) -> List[BaseRelation]:
"""Aggregate relations with format metadata included."""
relations = []
relations: List[BaseRelation] = []
for row in row_list:
_schema, name, information = relation_info_func(row)
relation = relation_info_func(row)

rel_type: RelationType = (
RelationType.View if "Type: VIEW" in information else RelationType.Table
RelationType.View
if relation.properties.get("Type") == "VIEW"
else RelationType.Table
)
is_delta: bool = "Provider: delta" in information
is_hudi: bool = "Provider: hudi" in information
is_iceberg: bool = "Provider: iceberg" in information

relation: BaseRelation = self.Relation.create(
schema=_schema,
identifier=name,
type=rel_type,
information=information,
is_delta=is_delta,
is_iceberg=is_iceberg,
is_hudi=is_hudi,

relations.append(
self.Relation.create(
schema=relation.table_schema,
identifier=relation.table_name,
type=rel_type,
is_delta=relation.properties.get("Provider") == "delta",
is_iceberg=relation.properties.get("Provider") == "iceberg",
is_hudi=relation.properties.get("Provider") == "hudi",
columns=relation.columns,
properties=relation.properties,
)
)
relations.append(relation)

return relations

Expand Down Expand Up @@ -248,80 +290,54 @@ def get_relation(self, database: str, schema: str, identifier: str) -> Optional[

return super().get_relation(database, schema, identifier)

def parse_describe_extended(
self, relation: BaseRelation, raw_rows: AttrDict
) -> List[SparkColumn]:
# Convert the Row to a dict
dict_rows = [dict(zip(row._keys, row._values)) for row in raw_rows]
# Find the separator between the rows and the metadata provided
# by the DESCRIBE TABLE EXTENDED statement
pos = self.find_table_information_separator(dict_rows)

# Remove rows that start with a hash, they are comments
rows = [row for row in raw_rows[0:pos] if not row["col_name"].startswith("#")]
metadata = {col["col_name"]: col["data_type"] for col in raw_rows[pos + 1 :]}
def get_columns_in_relation(self, relation: BaseRelation) -> List[SparkColumn]:
assert isinstance(relation, SparkRelation)
if relation.columns is not None and len(relation.columns) > 0:
columns = relation.columns
properties = relation.properties
else:
try:
describe_extended_result = self.execute_macro(
GET_COLUMNS_IN_RELATION_RAW_MACRO_NAME, kwargs={"relation": relation}
)
columns, properties = self._parse_describe_table_extended(describe_extended_result)
except dbt.exceptions.DbtRuntimeError as e:
# spark would throw error when table doesn't exist, where other
# CDW would just return and empty list, normalizing the behavior here
errmsg = getattr(e, "msg", "")
found_msgs = (msg in errmsg for msg in TABLE_OR_VIEW_NOT_FOUND_MESSAGES)
if any(found_msgs):
columns = []
properties = {}
else:
raise e

raw_table_stats = metadata.get(KEY_TABLE_STATISTICS)
# Convert the Row to a dict
raw_table_stats = properties.get(KEY_TABLE_STATISTICS)
table_stats = SparkColumn.convert_table_stats(raw_table_stats)
return [
SparkColumn(
table_database=None,
table_schema=relation.schema,
table_name=relation.name,
table_type=relation.type,
table_owner=str(metadata.get(KEY_TABLE_OWNER)),
table_owner=properties.get(KEY_TABLE_OWNER, ""),
table_stats=table_stats,
column=column["col_name"],
column=column_name,
column_index=idx,
dtype=column["data_type"],
dtype=column_type,
)
for idx, column in enumerate(rows)
for idx, (column_name, column_type) in enumerate(columns)
if column_name not in self.HUDI_METADATA_COLUMNS
]

@staticmethod
def find_table_information_separator(rows: List[dict]) -> int:
pos = 0
for row in rows:
if not row["col_name"] or row["col_name"].startswith("#"):
break
pos += 1
return pos

def get_columns_in_relation(self, relation: BaseRelation) -> List[SparkColumn]:
columns = []
try:
rows: AttrDict = self.execute_macro(
GET_COLUMNS_IN_RELATION_RAW_MACRO_NAME, kwargs={"relation": relation}
)
columns = self.parse_describe_extended(relation, rows)
except dbt.exceptions.DbtRuntimeError as e:
# spark would throw error when table doesn't exist, where other
# CDW would just return and empty list, normalizing the behavior here
errmsg = getattr(e, "msg", "")
found_msgs = (msg in errmsg for msg in TABLE_OR_VIEW_NOT_FOUND_MESSAGES)
if any(found_msgs):
pass
else:
raise e

# strip hudi metadata columns.
columns = [x for x in columns if x.name not in self.HUDI_METADATA_COLUMNS]
return columns

def parse_columns_from_information(self, relation: BaseRelation) -> List[SparkColumn]:
if hasattr(relation, "information"):
information = relation.information or ""
else:
information = ""
owner_match = re.findall(self.INFORMATION_OWNER_REGEX, information)
owner = owner_match[0] if owner_match else None
matches = re.finditer(self.INFORMATION_COLUMNS_REGEX, information)
def parse_columns_from_information(self, relation: SparkRelation) -> List[SparkColumn]:
owner = relation.properties.get(KEY_TABLE_OWNER, "")
columns = []
stats_match = re.findall(self.INFORMATION_STATISTICS_REGEX, information)
raw_table_stats = stats_match[0] if stats_match else None
table_stats = SparkColumn.convert_table_stats(raw_table_stats)
for match_num, match in enumerate(matches):
column_name, column_type, nullable = match.groups()
table_stats = SparkColumn.convert_table_stats(
relation.properties.get(KEY_TABLE_STATISTICS)
)
for match_num, (column_name, column_type) in enumerate(relation.columns):
column = SparkColumn(
table_database=None,
table_schema=relation.schema,
Expand All @@ -337,7 +353,7 @@ def parse_columns_from_information(self, relation: BaseRelation) -> List[SparkCo
return columns

def _get_columns_for_catalog(self, relation: BaseRelation) -> Iterable[Dict[str, Any]]:
columns = self.parse_columns_from_information(relation)
columns = self.parse_columns_from_information(relation) # type: ignore

for column in columns:
# convert SparkColumns into catalog dicts
Expand Down Expand Up @@ -410,13 +426,15 @@ def get_rows_different_sql(
"""
# This method only really exists for test reasons.
names: List[str]
if column_names is None:
if not column_names:
columns = self.get_columns_in_relation(relation_a)
names = sorted((self.quote(c.name) for c in columns))
else:
names = sorted((self.quote(n) for n in column_names))
columns_csv = ", ".join(names)

assert columns_csv, f"Could not find columns for: {relation_a}"

sql = COLUMNS_EQUAL_SQL.format(
columns=columns_csv,
relation_a=str(relation_a),
Expand Down
6 changes: 3 additions & 3 deletions dbt/adapters/spark/relation.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Optional, TypeVar
from typing import Optional, TypeVar, List, Tuple, Dict
from dataclasses import dataclass, field

from dbt.adapters.base.relation import BaseRelation, Policy
Expand Down Expand Up @@ -33,8 +33,8 @@ class SparkRelation(BaseRelation):
is_delta: Optional[bool] = None
is_hudi: Optional[bool] = None
is_iceberg: Optional[bool] = None
# TODO: make this a dict everywhere
information: Optional[str] = None
columns: List[Tuple[str, str]] = field(default_factory=list)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I like this! Much better than the information string ❤️

properties: Dict[str, str] = field(default_factory=dict)

def __post_init__(self) -> None:
if self.database != self.schema and self.database:
Expand Down
Loading