-
Notifications
You must be signed in to change notification settings - Fork 2
Radix python library with various improvements
License
deepfield/py-radix
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
py-radix is an implementation of a radix tree data structure for the storage and retrieval of IPv4 and IPv6 network prefixes. The radix tree is the data structure most commonly used for routing table lookups. It efficiently stores network prefixes of varying lengths and allows fast lookups of containing networks. To install, use the standard Python distutils incantation: python setup.py build python setup.py install Regression tests are in the test.py file. py-radix is licensed under a ISC/BSD licence. The underlying radix tree implementation is taken (and modified) from MRTd and is subject to a 4-term BSD license. See the LICENSE file for details. Please report bugs to Damien Miller <[email protected]>. Please check the TODO file first, in case your problem is something I already know about (please send patches!) A simple example that demonstrates most of the features: import radix # Create a new tree rtree = radix.Radix() # Adding a node returns a RadixNode object. You can create # arbitrary members in its 'data' dict to store your data rnode = rtree.add("10.0.0.0/8") rnode.data["blah"] = "whatever you want" # You can specify nodes as CIDR addresses, or networks with # separate mask lengths. The following three invocations are # identical: rnode = rtree.add("10.0.0.0/16") rnode = rtree.add("10.0.0.0", 16) rnode = rtree.add(network = "10.0.0.0", masklen = 16) # It is also possible to specify nodes using binary packed # addresses, such as those returned by the socket module # functions. In this case, the radix module will assume that # a four-byte address is an IPv4 address and a sixteen-byte # address is an IPv6 address. For example: binary_addr = inet_ntoa("172.18.22.0") rnode = rtree.add(packed = binary_addr, masklen = 23) # Exact search will only return prefixes you have entered # You can use all of the above ways to specify the address rnode = rtree.search_exact("10.0.0.0/8") # Get your data back out print rnode.data["blah"] # Use a packed address addr = socket.inet_ntoa("10.0.0.0") rnode = rtree.search_exact(packed = addr, masklen = 8) # Best-match search will return the longest matching prefix # that contains the search term (routing-style lookup) rnode = rtree.search_best("10.123.45.6") # There are a couple of implicit members of a RadixNode: print rnode.network # -> "10.0.0.0" print rnode.prefix # -> "10.0.0.0/8" print rnode.prefixlen # -> 8 print rnode.family # -> socket.AF_INET print rnode.packed # -> '\n\x00\x00\x00' # IPv6 prefixes are fully supported in the same tree rnode = rtree.add("2001:DB8::/3") rnode = rtree.add("::/0") # Use the nodes() method to return all RadixNodes created nodes = rtree.nodes() for rnode in nodes: print rnode.prefix # The prefixes() method will return all the prefixes (as a # list of strings) that have been entered prefixes = rtree.prefixes() # You can also directly iterate over the tree itself # this would save some memory if the tree is big # NB. Don't modify the tree (add or delete nodes) while # iterating otherwise you will abort the iteration and # receive a RuntimeWarning. Changing a node's data dict # is permitted. for rnode in rtree: print rnode.prefix $Id: README,v 1.12 2004/11/24 20:46:18 djm Exp $
About
Radix python library with various improvements
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published