A copy of repository https://github.com/genxnetwork/fl-genomics, which explores federated learning for phenotype-from-genotype and ancestry-from-genotype prediction. See the paper at https://www.medrxiv.org/content/10.1101/2023.01.24.23284898v2
It's recommended to work with TG codebase using conda
environemnt.
-
Install
conda
: https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html. -
Activate
conda
environment suing requirenemnts filerequirements_tg.txt
:
conda create --name genx --file tg_requirements.txt
- Activate the environment:
conda activate genx
- Install
pgenlib
from PLINK's repo:
git clone https://github.com/chrchang/plink-ng.git
cd plink-ng/2.0/Python
python3 setup.py build_ext
pip install -e .
- split module generates node datasets from the whole UKB dataset based on self-reported ancestry.
- qc module encapsulates node-based quality control.
- dimred module performs different strategies of dimensionality reduction.
- fl module compares various FL strategies on selected SNPs.
Run dash_app.py and open the link that appears in console in a browser. There assign filter+value or graph elements (x-axis, y-axis, color, etc.) to columns via dropdowns. Then press submit.