Skip to content

dymk/regal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Please don't use this - the API is broken, and the project needs a rewrite

Regal

SQL relational algebra builder for D

About

Regal (RElational ALgebra) is a dependency free library for generating SQL programatically, and is intended to be used as the SQL generator for ORMs (although it can be used on its own). The API is modeled after Ruby's Arel, and it attempts to provide analagous features. Its aim is to ease programatically generating complex SQL, and to adapt its output to fit specific databases (including MySQL, SQLite, PostgreSQL).

Usage

A quick introduction

struct Table is the main API exposed by Regal. A Table is initialized by supplying a table name (string), and the columns that the table has

import regal;

auto users = regal.Table(
  "users", // table name
  "id",    // the rest are columns
  "name",
  "created_at",
  "updated_at");

A query selecting all rows in users can be generated like so:

users.project(Sql("*")).to_sql;
// SELECT * FROM users

Columns are accessed by calling the column's name on the table, or by indexing the table with the column's name:

users["id"];
users.id;
// The above are equivalent expressions

.where called on a regal node can be used to supply a where clause:

users.where(users.id.eq(1)).project(Sql("*")).to_sql
// SELECT * FROM users WHERE users.id = 1

.where can be chained to supply further constriants on the clause:

users
  .where(users.id.eq(1))
  .where(users.name.like("%d%"))
  .project(Sql("*"))
  .to_sql

// SELECT * FROM users WHERE (users.id = 1) OR (users.name LIKE "%d%")

Nearly all methods can be composed to produce complex queries:

// Submission made by a user
submissions = regal.Table(
  "submissions",
  "id", "url", "user_id");

// Tags on a submission
tags = regal.Table(
  "tags",
  "id", "value", "submission_id");

tags
  .join(submissions, submissions.id.eq(tags.submission_id))
  .join(users,       users.id.eq(submissions.user_id))
  .where(users.id.eq(1))
  .project(Sql("*"))
  .to_sql

// SELECT * FROM tags
//  INNER JOIN submissions ON (submissions.id = tags.submission_id)
//  INNER JOIN users ON (users.id = submissions.user_id)
// WHERE (users.id = 1)

Group, Limit, Skip, Order

Rows can be grouped, limited, skipped , and ordered. group and order can take a variable number of nodes as arguments. asc, desc, and order(string) can be called on columns to specify a predefined column ordering, or a custom order if needed.

// Get the 9th user in the table
users
  .order(users.id.asc)
  .skip(9)
  .limit(1)
  .project(Sql("*"))
  .to_sql
// SELECT * FROM users ORDER BY users.id SKIP 9 LIMIT 1
// Group by tag value
tags
  .group(tags.value)
  .project(tags.value)
  .to_sql
// SELECT tags.value FROM tags GROUP BY tags.value

Applying multiple constraints

Three methods can be chained on nodes to apply constraints: .where, .and, and .or on tables, and .and and .or on constraint expressions (commonly for nesting complex constraints)

For instance:

  tags
    .where(tags.name.like("%foo%"))
    .or(tags.name.like("%bar%"))
    .and(
      // Nested constraints, called directly on columns
      tags.id.lt(5).or(tags.id.gt(0)))
    .project(tags.id)
    .to_sql

  // SELECT tags.id FROM tags WHERE
  // (((tags.value LIKE "%foo%") OR
  //   (tags.value LIKE "%bar%")) AND
  //  ((tags.id < 5) OR (tags.id > 0)))

Join types

The Join.Type enum defines common joins for tables, defaulting to an Inner join. Calling .join with a different type of join (or a string) will use that join.

Members on Join.Type:

  • Inner
  • LeftOuter
  • FullOuter
tags
  .join(submissions, Join.Type.LeftOuter, submissions.id.eq(tags.submission_id))
  .join(users,       "CUSTOM JOIN", users.id.eq(submissions.user_id))
  .where(users.id.eq(1))
  .project(Sql("*"))
  .to_sql

// SELECT * FROM tags
//  LEFT OUTER JOIN submissions ON (submissions.id = tags.submission_id)
//  CUSTOM JOIN users ON (users.id = submissions.user_id)
// WHERE (users.id = 1)

Column operators

Columns support the entire range of SQL binary operators. (Note that _in is prefixed with an underscore, as in is a reserved keyword)

Expression SQL
users.id.eq(1) users.id = 1
users.id.ne(1) users.id <> 1
users.id.lt(1) users.id < 1
users.id.lte(1) users.id <= 1
users.id.gt(1) users.id > 1
users.id.gte(1) users.id >= 1
users.name.like("foo") users.name LIKE "foo"
users.name.not_like("foo") users.name NOT LIKE "foo"
users.id._in([1, 2]) users.id IN (1, 2)
users.id.not_in([3, 4]) users.id NOT IN (3, 4)
users.id.as("user_id") users.id AS user_id

Using arbitrary types

Arbitrary types (such as a struct) can be used within SQL operators, and are converted to SQL based on the following rules:

  • If the type has a method .to_sql, which can return a primitive types (int, string, etc), the return value of that method will be used to represent the type.
  • Else, std.conv.to!string will be used to convert the type to a string

Input ranges and arrays can be used to generate SQL as well, such as for use with the IN operator.

For example:

struct User {
  int id;
  string name;

  int to_sql() {
    return id;
  }
}

auto target_users = [User(1, "Dylan"), User(2, "Sage")];
users
  .where(users.id._in(target_users))
  .project(Sql("*"))
// SELECT * FROM users WHERE users.id IN (1, 2)

Todo

Write adapters for SQLite and PostgreSQL (see regal/mysql_printer.d for examples)

Authors

Copyright (C) 2014, Dylan Knutson (github.com/dymk)

License

Regal is distributed under the Boost Software License.

About

SQL Relational algebra builder for D

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages