forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Datasets] [Operator Fusion - 3/N] Add operator fusion benchmark. (ra…
…y-project#32747) This PR adds a benchmark for operator fusion, where we're interested in the performance of operators that have been fused into a single task. This primarily tests our fusion rule and data layer code. Signed-off-by: elliottower <[email protected]>
- Loading branch information
1 parent
46d7391
commit 1cb46bf
Showing
1 changed file
with
182 additions
and
0 deletions.
There are no files selected for viewing
182 changes: 182 additions & 0 deletions
182
release/nightly_tests/dataset/operator_fusion_benchmark.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
import argparse | ||
import json | ||
import time | ||
from typing import Dict, List, Any | ||
|
||
import pandas as pd | ||
import pyarrow as pa | ||
import numpy as np | ||
|
||
import ray | ||
from ray.data.block import BlockMetadata | ||
from ray.data.context import DatasetContext, DEFAULT_TARGET_MAX_BLOCK_SIZE | ||
from ray.data.datasource import Datasource, ReadTask, Reader | ||
|
||
|
||
class BlockDatasource(Datasource): | ||
def create_reader( | ||
self, | ||
num_blocks_per_task: int, | ||
block_size: int, | ||
data_format: str, | ||
num_columns: int, | ||
): | ||
return BlockReader(num_blocks_per_task, block_size, data_format, num_columns) | ||
|
||
|
||
class BlockReader(Reader): | ||
def __init__( | ||
self, | ||
num_blocks_per_task: int, | ||
block_size: int, | ||
data_format: str, | ||
num_columns: int, | ||
): | ||
self.num_blocks_per_task = num_blocks_per_task | ||
self.block_size = block_size | ||
self.data_format = data_format | ||
self.num_columns = num_columns | ||
|
||
def estimate_inmemory_data_size(self): | ||
return None | ||
|
||
def get_read_tasks(self, parallelism: int): | ||
def _blocks_generator(): | ||
values = [1] * self.block_size | ||
columns = {str(i): values for i in range(self.num_columns)} | ||
for _ in range(self.num_blocks_per_task): | ||
if self.data_format == "pandas": | ||
yield pd.DataFrame(columns) | ||
elif self.data_format == "simple": | ||
assert len(columns) == 1 | ||
yield columns["0"] | ||
elif self.data_format == "pyarrow": | ||
yield pa.table(columns) | ||
|
||
size_bytes = self.num_blocks_per_task * self.num_columns * self.block_size * 8 | ||
|
||
return parallelism * [ | ||
ReadTask( | ||
lambda: _blocks_generator(), | ||
BlockMetadata( | ||
num_rows=self.num_blocks_per_task * self.block_size, | ||
size_bytes=size_bytes, | ||
schema=None, | ||
input_files=None, | ||
exec_stats=None, | ||
), | ||
) | ||
] | ||
|
||
|
||
def make_ds( | ||
num_tasks: int, | ||
num_blocks_per_task: int, | ||
block_size: int, | ||
data_format: str, | ||
num_columns: int, | ||
ops_spec: List[Dict[str, Any]], | ||
target_max_block_size: int, | ||
) -> ray.data.Dataset: | ||
ds = ray.data.read_datasource( | ||
BlockDatasource(), | ||
num_blocks_per_task=num_blocks_per_task, | ||
block_size=block_size, | ||
data_format=data_format, | ||
num_columns=num_columns, | ||
parallelism=num_tasks, | ||
) | ||
for op_spec in ops_spec: | ||
op = op_spec.pop("op") | ||
if op == "flat_map": | ||
fn = lambda x: [x, x] # noqa: E731 | ||
else: | ||
fn = lambda x: x # noqa: E731 | ||
ds = getattr(ds, op)(fn, **op_spec) | ||
return ds | ||
|
||
|
||
def execute_ds(ds: ray.data.Dataset): | ||
ds = ds.fully_executed() | ||
|
||
|
||
def _summarize_results(results: List[Dict[str, float]]) -> Dict[str, float]: | ||
if len(results) == 1: | ||
return results[0] | ||
execution_times = [trial_results["execution_time"] for trial_results in results] | ||
return { | ||
"mean_execution_time": np.mean(execution_times), | ||
"max_execution_time": np.max(execution_times), | ||
"min_execution_time": np.min(execution_times), | ||
"std_execution_time": np.std(execution_times), | ||
} | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--num-tasks", type=int, default=1) | ||
parser.add_argument("--num-blocks-per-task", type=int, default=1024) | ||
parser.add_argument("--block-size", type=int, default=8**1024) | ||
parser.add_argument("--data-format", type=str, default="simple") | ||
parser.add_argument("--num-columns", type=int, default=1) | ||
parser.add_argument( | ||
"--ops-spec", | ||
type=str, | ||
default=( | ||
'[{"op": "map_batches", "batch_size": 1024, "batch_format": "default"}]' | ||
), | ||
) | ||
parser.add_argument("--target-max-block-size", type=int, default=None) | ||
parser.add_argument("--disable-optimizer", action="store_true", default=False) | ||
parser.add_argument("--num-trials", type=int, default=1) | ||
args = parser.parse_args() | ||
|
||
# Only allow num_columns > 0 when not using the simple data format. | ||
assert args.num_columns == 1 or args.data_format != "simple" | ||
|
||
# Load the ops spec JSON. | ||
ops_spec = json.loads(args.ops_spec) | ||
|
||
target_max_block_size = args.target_max_block_size | ||
if target_max_block_size is None: | ||
target_max_block_size = DEFAULT_TARGET_MAX_BLOCK_SIZE | ||
|
||
print( | ||
f"\nRunning zero-copy batching benchmark for {args.num_trials} trials:\n" | ||
f"num_tasks={args.num_tasks}\nnum_blocks_per_task={args.num_blocks_per_task}\n" | ||
f"block_size={args.block_size}\ndata_format={args.data_format}\n" | ||
f"num_columns={args.num_columns}\n" | ||
f"target_max_block_size={target_max_block_size}\nray_commit={ray.__commit__}\n" | ||
f"ops_spec:\n{json.dumps(ops_spec, indent=4)}" | ||
) | ||
|
||
ray.init() | ||
|
||
ctx = DatasetContext.get_current() | ||
ctx.target_max_block_size = target_max_block_size | ||
if args.disable_optimizer: | ||
ctx.optimizer_enabled = False | ||
else: | ||
ctx.optimizer_enabled = True | ||
results = [] | ||
for trial in range(args.num_trials): | ||
print(f"\n\nRunning trial {trial}\n") | ||
print("\tCreating dataset.\n") | ||
start = time.perf_counter() | ||
ds = make_ds( | ||
args.num_tasks, | ||
args.num_blocks_per_task, | ||
args.block_size, | ||
args.data_format, | ||
args.num_columns, | ||
ops_spec, | ||
target_max_block_size, | ||
) | ||
print("\tExecuting dataset.\n") | ||
execute_ds(ds) | ||
execution_time = time.perf_counter() - start | ||
trial_results = {"execution_time": execution_time} | ||
print(f"\tTrial {trial} done: ", trial_results) | ||
results.append(trial_results) | ||
result_summary = _summarize_results(results) | ||
print("\n\nResults: ", result_summary) |