These libraries started life (a long time ago) as simple ‘latitude/longitude’ code fragments intended to help people who had little experience of geodesy, and perhaps limited programming experience.
The intention was to have clear, simple illustrative code samples which could be adapted and re-used in other projects (whether those be coded in JavaScript, Java, C++, Excel VBA, Fortran(!), or anything else...). With its untyped C-style syntax, JavaScript reads remarkably close to pseudo-code, exposing the algorithms with a minimum of syntactic distractions
While still valid for that purpose, they have grown since then into considerable libraries, based around:
- simpler trigonometric functions (distance, bearing, etc) based on a spherical earth model
- more sophisticated trigonometric functions (distance, bearing, datum conversions, etc) based on a more accurate ellipsoidal earth model
- vector-based functions based (mostly) on a spherical earth model
Complementing these are various mapping-related functions covering:
- UTM coordinates & MGRS grid references
- UK Ordnance Survey grid references
There are also supporting libraries:
- 3d vector manipulation functions, also used for cartesian (x/y/z) coordinates
- functions for conversion between decimal degrees and degrees/minutes/seconds
The spherical-earth model provides simple formulae covering most ‘everyday’ accuracy requirements; the ellipsoidal-earth model provides more accurate formulae at the expense of complexity; the vector-based functions provide for an alternative (largely trig-free) approach.
The three core libraries (latlon-spherical.js, latlon-ellipsoidal.js, latlon-vectors.js) are mutually exclusive: only one can be used at a time. The mapping-related libraries depend on the ellipsoidal model.
These functions are as language-agnostic as possible, avoiding (as far as possible) JavaScript-specific language features which would not be recognised by users of other languages (and which might be difficult to translate to other languages). I use Greek letters in variables representing maths symbols conventionally presented as Greek letters: I value the great benefit in legibility over the minor inconvenience in typing.
Geodesy functions for working with points and paths (distances, bearings, destinations, etc) on a spherical-model earth, including (orthodromic) great-circle geodesics and (loxodromic) rhumb lines. All calculations are done using simple spherical trigonometric formulae.
- Constructor
new LatLon(lat, lon)
- Create new latitude/longitude point on a spherical earth model
- Methods
latlon.distanceTo(point[, radius])
- Distance to 2nd point (using haversine formula)
latlon.bearingTo(point)
- (Initial) bearing to 2nd point
latlon.finalBearingTo(point)
- Final bearing to 2nd point
latlon.midpointTo(point)
- Midpoint to 2nd point
latlon.intermediatePointTo(point, fraction)
- Point at given fraction towards 2nd point
latlon.destinationPoint(distance, bearing[, radius])
- Destination point travelling given distance on given bearing
LatLon.intersection(point1, bearing1, point2, bearing2)
- Intersection point of two paths defined by point and bearing
LatLon.crossTrackDistanceTo(pathStart, pathEnd, radius)
- Distance to great circle defined by pathStart and pathEnd
LatLon.maxLatitude(bearing)
- Maximum latitude reached travelling on given (initial) bearing
LatLon.crossingParallels(point1, point2, latitude)
- Meridians at which great circle defined by point1 & point2 cross given latitude
latlon.rhumbDistanceTo(point[, radius])
- Distance to point along rhumb line
latlon.rhumbBearingTo(point)
- (Initial) bearing to point along rhumb line
latlon.rhumbDestinationPoint(distance, bearing[, radius])
- Destination point travelling distance on bearing
latlon.rhumbMidpointTo(point)
- Midpoint on rhumb line to 2nd point
LatLon.areaOf(polygon[, radius])
- Area of polygon defined by array of vertex points
latlon.equals(point)
- Equality of points
latlon.toString([format[, decimals]])
- String representation of point, in deg/deg-min/deg-min-sec format to given decimal places
Full details are available at www.movable-type.co.uk/scripts/latlong.html.
Notes: previously named simply latlon.js; radius moved from constructor to distance calculation methods; distances previously in kilometres now default to metres, order of arguments to destination point methods reversed.
Datum conversions etc on an ellipsoidal-model earth.
- Constructor
new LatLon(lat, lon[, datum])
- Create new latitude/longitude point on an ellipsoidal earth model using given datum (default WGS84)
- Properties
datum
- Associated ellipsoids, and Helmert transform parameters from WGS84, for various datums
ellipsoid
- Ellipsoid parameters major axis (a), minor axis (b), and flattening (f) for various ellipsoids
- Methods
latlon.convertDatum(datum)
- Convert point into new datum
latlon.toCartesian()
- Convert point to cartesian Vector3d point
vector3d.toLatLon([datum])
- Convert cartesian (Vector3d) point to (geodetic) latitude/longitude in given datum (default WGS84)
latlon.toString([format[, decimals]])
- String representation of point, in d/dm/dms format to given decimal places
Notes: LatLonE
now simply LatLon
.
More information at www.movable-type.co.uk/scripts/latlong-convert-coords.html.
Direct and inverse solutions of geodesics on the ellipsoid using Vincenty formulae (accurate to within 0.5mm distance, 0.000015″ bearing).
- Methods
latlon.distanceTo(point)
- Distance to point (using Vincenty calculation)
latlon.bearingTo(point)
- (Initial) bearing to point (using Vincenty calculation)
latlon.finalBearingTo(point)
- Final bearing to point (using Vincenty calculation)
latlon.destinationPoint(distance, bearing)
- Destination point travelling distance on bearing (using Vincenty calculation)
latlon.finalBearingOn(distance, initialBearing)
- Final bearing having travelled along a geodesic given by initial bearing for given distance
Full details are available at www.movable-type.co.uk/scripts/latlong-vincenty.html.
Sometimes geodesy calculations can be easier using vectors rather than spherical trigonometry; this
provides some basic functions. The toVector
and toLatLon
functions are equally applicable to
a spherical model and an ellipsoidal model (using ‘n-vectors’); other functions are applicable
to a spherical earth model only.
- Constructor
new LatLon(lat, lon)
- Create new latitude/longitude point on a spherical earth model of given radius (default 6371km)
- Methods
latlon.toVector()
- Convert (spherical/geodetic) latitude/longitude point to vector
vector3d.toLatLonS()
- Convert cartesian (Vector3d) coordinate to (spherical) latitude/longitude point
latlon.greatCircle(bearing)
- Return vector representing great circle obtained by heading on given bearing from latlon point
latlon.distanceTo(point[, radius])
- Distance to point
latlon.bearingTo(point)
- (Initial) bearing to point
latlon.midpointTo(point)
- Midpoint to 2nd point
latlon.intermediatePointTo(point, fraction)
- Point at given fraction towards 2nd point
latlon.intermediatePointOnChordTo(point, fraction)
- Point at given fraction along straight line towards 2nd point
latlon.destinationPoint(distance, bearing[, radius])
- Destination point travelling distance on bearing
LatLon.intersection(path1start, path1brngEnd, path2start, path2brngEnd)
- Intersection of two paths defined by start+bearing or start+end
latlon.crossTrackDistanceTo(pathStart, pathBrngEnd[, radius])
- Distance to great circle defined by start-point and end-point/bearing
latlon.nearestPointOnSegment(point1, point2)
- Closest point on segment between two other points
latlon.isBetween(point1, point2)
- Whether point is between two other points
latlon.enclosedBy(points)
- Whether point is enclosed by polygon
LatLon.areaOf(polygon[, radius])
- Area of polygon defined by array of vertex points
LatLon.meanOf(points)
- Geographic mean of set of points
latlon.equals(point)
- Whether points are equal
latlon.toString([format[, decimals]])
- String representation of point, in d/dm/dms format to given decimal places
Notes: LatLonE
now simply LatLon
; order of arguments to destination point method reversed.
More thought is required on which of these functions operate on spherical model, which on n-vector
(geodetic) ellipsoidal model, and which equally on either.
More information at www.movable-type.co.uk/scripts/latlong-vectors.html.
Generic 3-d vector functions, not tied to geodesy applications.
- Constructor
new Vector3d(x, y, z)
- Create new 3-d vector
- Methods
vector3d.plus(v)
- Add vector v
vector3d.minus(v)
- Subtract vector v
vector3d.times(x)
- Multiply vector by (scalar) x
vector3d.dividedBy(x)
- Divide vector by (scalar) x
vector3d.dot(v)
- Multiply vector by v using dot (scalar) product
vector3d.cross(v)
- Multiply vector by v using cross (vector) product
vector3d.negate()
- Negate vector to point in the opposite direction
vector3d.length()
- Length (magnitude or norm) of vector
vector3d.unit()
- Normalize a vector to its unit vector
vector3d.angleTo(v, vSign)
- Angle to 2nd vector
vector3d.rotateAround(axis, theta)
- Rotate vector around axis by given angle
vector3d.toString(decimals)
- String representation of vector
Conversions between UTM coordinates and latitude-longitude points using Karney’s calculations (accurate to 5nm).
- Constructor
new Utm(zone, hemisphere, easting, northing[, datum[, convergence, scale]])
- Create new UTM coordinate on given datum (default WGS84)
- Methods
latlon.toUtm()
- Convert (geodetic) latitude/longitude point to UTM coordinate
utm.toLatLonE()
- Convert UTM coordinate to latitude/longitude point
Utm.parse([utmCoord])
- Parse string representation of UTM coordinate
utm.toString([digits])
- String representation of UTM coordinate
More information at www.movable-type.co.uk/scripts/latlong-utm-mgrs.html.
Conversions between MGRS/NATO grid references and UTM coordinates.
- Constructor
new Mgrs(zone, band, e100k, n100k, easting, northing[, datum])
- Create new MGRS grid reference on given datum (default WGS84)
- Methods
Utm.toMgrs()
- Convert UTM coordinate to MGRS grid reference
mgrs.toUtm()
- Convert MGRS grid reference to UTM coordinate
Mgrs.parse(mgrsGridRef)
- Parse string representation of MGRS grid reference
mgrs.toString([digits])
- String representation of MGRS grid reference
More information at www.movable-type.co.uk/scripts/latlong-utm-mgrs.html.
Conversions between UK OS grid references and (OSGB36) latitude/longitude points (based on Ordnance Survey formulae).
- Constructor
new OsGridRef(easting, northing)
- Create new OS grid reference
- Methods
OsGridRef.latLonToOsGrid(point)
- Convert UTM coordinate to MGRS grid reference
OsGridRef.osGridToLatLon(gridref, datum)
- Convert OS grid reference to latitude/longitude
OsGridRef.parse(gridref)
- Parse string representation of OS grid reference
osGridRef.toString([digits])
- String representation of OS grid reference
More information at www.movable-type.co.uk/scripts/latlong-gridref.html.
Conversions between decimal degrees and (sexagesimal) degrees-minutes-seconds (and compass points).
- Methods
Dms.parseDMS(dmsStr)
- Parse string representing degrees/minutes/seconds into numeric degrees
Dms.toDms(degrees[, format[, decimals]])
- Convert decimal degrees to deg/min/sec format
Dms.toLat(degrees[, format[, decimals]])
- Convert numeric degrees to deg/min/sec latitude (2-digit degrees, suffixed with N/S)
Dms.toLon(degrees[, format[, decimals]])
- Convert numeric degrees to deg/min/sec longitude (2-digit degrees, suffixed with E/W)
Dms.toBrng(degrees[, format[, decimals]])
- Convert numeric degrees to deg/min/sec as a bearing (0°..360°)
Dms.compassPoint(bearing[, precision])
- Return compass point for supplied bearing to given precision (cardinal / intercardinal / secondary-intercardinal)
Notes: renamed from Geo
(geo.js)
Documentation for all these methods is available at www.movable-type.co.uk/scripts/js/geodesy/docs.
While originally intended as illustrative code fragments, these functions can be used ‘as-is’, either client-side in-browser or with Node.js.
The scripts can be used in the browser simply by including them within <script>
tags. This involves
an appreciation of dependencies, the order of loading is significant. I believe browserify, bower,
etc can use npm and/or github directly, but I have no experience of using front-end package managers.
eg for various calculations on a spherical model earth:
<!doctype html><title>spherical</title><meta charset="utf-8">
<script src="js/geodesy/latlon-spherical.js"></script>
<script src="js/geodesy/dms.js"></script>
<script>
var p1 = new LatLon(50.06632, -5.71475);
var p2 = new LatLon(58.64402, -3.07009);
var d = p1.distanceTo(p2);
console.assert(d.toFixed(3) == '968874.704');
var mid = p1.midpointTo(p2);
console.assert(mid.toString() == '54°21′44″N, 004°31′51″W');
</script>
eg for geodesic distance using Vincenty’s algorithm:
<!doctype html><title>vincenty</title><meta charset="utf-8">
<script src="js/geodesy/vector3d.js"></script>
<script src="js/geodesy/latlon-ellipsoidal.js"></script>
<script src="js/geodesy/latlon-vincenty.js"></script>
<script src="js/geodesy/dms.js"></script>
<script>
var p1 = new LatLon(50.06632, -5.71475);
var p2 = new LatLon(58.64402, -3.07009);
var d = p1.distanceTo(p2);
console.assert(d.toFixed(3) == '969954.166');
</script>
eg for UTM conversions:
<!doctype html><title>utm</title><meta charset="utf-8">
<script src="js/geodesy/vector3d.js"></script>
<script src="js/geodesy/latlon-ellipsoidal.js"></script>
<script src="js/geodesy/utm.js"></script>
<script src="js/geodesy/dms.js"></script>
<script>
var utm = Utm.parse('48 N 377298.745 1483034.794');
var latlon = utm.toLatLonE();
console.assert(latlon.toString('dms', 2) == '13°24′45.00″N, 103°52′00.00″E');
</script>
eg for OS grid references:
<!doctype html><title>osgridref</title><meta charset="utf-8">
<script src="js/geodesy/vector3d.js"></script>
<script src="js/geodesy/latlon-ellipsoidal.js"></script>
<script src="js/geodesy/osgridref.js"></script>
<script src="js/geodesy/dms.js"></script>
<script>
var gridref = new OsGridRef(651409.903, 313177.270);
var pWgs84 = OsGridRef.osGridToLatLon(gridref);
console.assert(pWgs84.toString('dms', 4) == '52°39′28.7230″N, 001°42′57.7870″E');
var pOsgb = OsGridRef.osGridToLatLon(gridref, LatLon.datum.OSGB36);
console.assert(pOsgb.toString('dms', 4) == '52°39′27.2531″N, 001°43′04.5177″E');
</script>
I’ve also made a packaged-up npm package available:
npm install geodesy
eg for various calculations on a spherical model earth:
var LatLon = require('geodesy').LatLonSpherical;
var p1 = new LatLon(50.06632, -5.71475);
var p2 = new LatLon(58.64402, -3.07009);
var d = p1.distanceTo(p2);
console.assert(d.toFixed(3) == '968874.704');
var mid = p1.midpointTo(p2);
console.assert(mid.toString() == '54°21′44″N, 004°31′51″W');
eg for geodesic distance:
var LatLon = require('geodesy').LatLonEllipsoidal;
var p1 = new LatLon(50.06632, -5.71475);
var p2 = new LatLon(58.64402, -3.07009);
var d = p1.distanceTo(p2);
console.assert(d.toFixed(3) == '969954.166');
eg for UTM conversions:
var LatLon = require('geodesy').LatLonEllipsoidal;
var Utm = require('geodesy').Utm;
var Dms = require('geodesy').Dms;
var utm = Utm.parse('48 N 377298.745 1483034.794');
var latlon = utm.toLatLonE();
console.assert(latlon.toString('dms', 2) == '13°24′45.00″N, 103°52′00.00″E');
eg for OS grid references:
var OsGridRef = require('geodesy').OsGridRef;
var gridref = new OsGridRef(651409.903, 313177.270);
var pWgs84 = OsGridRef.osGridToLatLon(gridref);
console.assert(pWgs84.toString('dms', 4) == '52°39′28.7230″N, 001°42′57.7870″E');
var pOsgb = OsGridRef.osGridToLatLon(gridref, LatLon.datum.OSGB36);
console.assert(pOsgb.toString('dms', 4) == '52°39′27.2531″N, 001°43′04.5177″E');