Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix ValueType.UNIX_TIMESTAMP conversions #2219

Merged
merged 3 commits into from
Jan 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 24 additions & 1 deletion sdk/python/feast/type_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ def _type_err(item, dtype):
ValueType.UNIX_TIMESTAMP_LIST: (
Int64List,
"int64_list_val",
[np.int64, np.int32, int],
[np.datetime64, np.int64, np.int32, int, datetime, Timestamp],
),
ValueType.STRING_LIST: (StringList, "string_list_val", [np.str_, str]),
ValueType.BOOL_LIST: (BoolList, "bool_list_val", [np.bool_, bool]),
Expand Down Expand Up @@ -272,6 +272,24 @@ def _python_value_to_proto_value(
)
raise _type_err(first_invalid, valid_types[0])

if feast_value_type == ValueType.UNIX_TIMESTAMP_LIST:
converted_values = []
for value in values:
converted_sub_values = []
for sub_value in value:
if isinstance(sub_value, datetime):
converted_sub_values.append(int(sub_value.timestamp()))
elif isinstance(sub_value, Timestamp):
converted_sub_values.append(int(sub_value.ToSeconds()))
elif isinstance(sub_value, np.datetime64):
converted_sub_values.append(
sub_value.astype("datetime64[s]").astype("int")
)
else:
converted_sub_values.append(sub_value)
converted_values.append(converted_sub_values)
values = converted_values

return [
ProtoValue(**{field_name: proto_type(val=value)})
if value is not None
Expand All @@ -290,6 +308,11 @@ def _python_value_to_proto_value(
return [
ProtoValue(int64_val=int(value.ToSeconds())) for value in values
]
elif isinstance(sample, np.datetime64):
return [
ProtoValue(int64_val=value.astype("datetime64[s]").astype("int"))
for value in values
]
return [ProtoValue(int64_val=int(value)) for value in values]

if feast_value_type in PYTHON_SCALAR_VALUE_TYPE_TO_PROTO_VALUE:
Expand Down
7 changes: 7 additions & 0 deletions sdk/python/tests/data/data_creator.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,13 @@ def get_feature_values_for_dtype(
"float": [1.0, None, 3.0, 4.0, 5.0],
"string": ["1", None, "3", "4", "5"],
"bool": [True, None, False, True, False],
"datetime": [
datetime(1980, 1, 1),
None,
datetime(1981, 1, 1),
datetime(1982, 1, 1),
datetime(1982, 1, 1),
],
}
non_list_val = dtype_map[dtype]
if is_list:
Expand Down
32 changes: 21 additions & 11 deletions sdk/python/tests/integration/registration/test_universal_types.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import logging
import re
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import List
Expand Down Expand Up @@ -28,6 +29,7 @@ def populate_test_configs(offline: bool):
(ValueType.INT64, "int64"),
(ValueType.STRING, "float"),
(ValueType.STRING, "bool"),
(ValueType.INT32, "datetime"),
]
configs: List[TypeTestConfig] = []
for test_repo_config in FULL_REPO_CONFIGS:
Expand Down Expand Up @@ -232,6 +234,7 @@ def test_feature_get_online_features_types_match(online_types_test_fixtures):
"float": float,
"string": str,
"bool": bool,
"datetime": int,
}
expected_dtype = feature_list_dtype_to_expected_online_response_value_type[
config.feature_dtype
Expand All @@ -258,6 +261,8 @@ def create_feature_view(
value_type = ValueType.FLOAT_LIST
elif feature_dtype == "bool":
value_type = ValueType.BOOL_LIST
elif feature_dtype == "datetime":
value_type = ValueType.UNIX_TIMESTAMP_LIST
else:
if feature_dtype == "int32":
value_type = ValueType.INT32
Expand All @@ -267,6 +272,8 @@ def create_feature_view(
value_type = ValueType.FLOAT
elif feature_dtype == "bool":
value_type = ValueType.BOOL
elif feature_dtype == "datetime":
value_type = ValueType.UNIX_TIMESTAMP

return driver_feature_view(data_source, name=name, value_type=value_type,)

Expand All @@ -281,6 +288,7 @@ def assert_expected_historical_feature_types(
"float": (pd.api.types.is_float_dtype,),
"string": (pd.api.types.is_string_dtype,),
"bool": (pd.api.types.is_bool_dtype, pd.api.types.is_object_dtype),
"datetime": (pd.api.types.is_datetime64_any_dtype,),
}
dtype_checkers = feature_dtype_to_expected_historical_feature_dtype[feature_dtype]
assert any(
Expand All @@ -307,6 +315,7 @@ def assert_feature_list_types(
bool,
np.bool_,
), # Can be `np.bool_` if from `np.array` rather that `list`
"datetime": np.datetime64,
}
expected_dtype = feature_list_dtype_to_expected_historical_feature_list_dtype[
feature_dtype
Expand All @@ -328,22 +337,23 @@ def assert_expected_arrow_types(
historical_features_arrow = historical_features.to_arrow()
print(historical_features_arrow)
feature_list_dtype_to_expected_historical_feature_arrow_type = {
"int32": "int64",
"int64": "int64",
"float": "double",
"string": "string",
"bool": "bool",
"int32": r"int64",
"int64": r"int64",
"float": r"double",
"string": r"string",
"bool": r"bool",
"datetime": r"timestamp\[.+\]",
}
arrow_type = feature_list_dtype_to_expected_historical_feature_arrow_type[
feature_dtype
]
if feature_is_list:
assert (
str(historical_features_arrow.schema.field_by_name("value").type)
== f"list<item: {arrow_type}>"
assert re.match(
f"list<item: {arrow_type}>",
str(historical_features_arrow.schema.field_by_name("value").type),
)
else:
assert (
str(historical_features_arrow.schema.field_by_name("value").type)
== arrow_type
assert re.match(
arrow_type,
str(historical_features_arrow.schema.field_by_name("value").type),
)