Skip to content

frank-hutter/fanova

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fanova

Functional ANOVA: an implementation of the ICML 2014 paper "An Efficient Approach for Assessing Hyperparameter Importance" by Frank Hutter, Holger Hoos and Kevin Leyton-Brown.

Requirements

Fanova requires Java 7.

Installation

Manually

git clone https://github.com/automl/fanova.git
cd fanova/
python setup.py install

Example usage

To run the examples, just download the data and start the python console. We can then import Fanova and start it by typing

>>> from pyfanova.fanova import Fanova
>>> f = Fanova("example/online_lda")

This creates a new Fanova object and fits the Random Forest on the specified data set. (Note: if you use data generated by SMAC, replace the above path with the path to the state-run directory)

To compute now the marginal of the first parameter type:

>>> f.get_marginal(0)
5.44551614362

Fanova also allows to specify parameters by their names.

>>> f.get_marginal("Col0")
5.44551614362

Pairwise marginals of two parameters can be computed with the command

>>>  f.get_pairwise_marginal(0, 1)
0.9370525790628655

Again the same can been done by specifing names instead of indices

>>> f.get_pairwise_marginal("Col0","Col1")
0.9370525790628655

If we want to compute the mean and standard deviation of a parameter for a certain value, we can use

>>> f.get_marginal_for_value("Col0", 0.1)
(1956.6644432031385, 110.58740682895211)

To visualize the single and pairwise marginals, we have to create a visualizer object first

>>> from pyfanova.visualizer import Visualizer
>>> vis = Visualizer(f)

We can then plot single marginals by

>>> plot = vis.plot_marginal("Col1")
>>> plot.show()

what should look like this example plots

The same can been done for pairwise marginals

>>> vis.plot_pairwise_marginal("Col0", "Col2")

example plots

At last, all plots can be created together and stored in a directory with

>>> vis.create_all_plots("./plots/")

If your data is stored in csv file, you can run Fanova with

>>> from pyfanova.fanova_from_csv import FanovaFromCSV
>>> f = FanovaFromCSV("/path_to_data/data.csv")

Please make sure, that your csv file has the form

X0 X1 ... Y
0.1 0.2 ... 0.3
0.3 0.4 ... 0.6

It is also possible to run Fanova on data colleted by HPOlib

>>> from pyfanova.fanova_from_hpolib import FanovaFromHPOLib
>>> f = FanovaFromHPOLib("params.pcs",["data.pkl"])

About

Functional ANOVA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published