-
Notifications
You must be signed in to change notification settings - Fork 547
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
801 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
# BEvFormer-tiny consumes at lease 6700M GPU memory | ||
# compared to bevformer_base, bevformer_tiny has | ||
# smaller backbone: R101-DCN -> R50 | ||
# smaller BEV: 200*200 -> 50*50 | ||
# less encoder layers: 6 -> 3 | ||
# smaller input size: 1600*900 -> 800*450 | ||
# multi-scale feautres -> single scale features (C5) | ||
|
||
|
||
_base_ = [ | ||
'../datasets/custom_nus-3d.py', | ||
'../_base_/default_runtime.py' | ||
] | ||
# | ||
plugin = True | ||
plugin_dir = 'projects/mmdet3d_plugin/' | ||
|
||
# If point cloud range is changed, the models should also change their point | ||
# cloud range accordingly | ||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
voxel_size = [0.2, 0.2, 8] | ||
|
||
|
||
|
||
|
||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
|
||
# For nuScenes we usually do 10-class detection | ||
class_names = [ | ||
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', | ||
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' | ||
] | ||
|
||
input_modality = dict( | ||
use_lidar=False, | ||
use_camera=True, | ||
use_radar=False, | ||
use_map=False, | ||
use_external=True) | ||
|
||
_dim_ = 256 | ||
_pos_dim_ = _dim_//2 | ||
_ffn_dim_ = _dim_*2 | ||
_num_levels_ = 1 | ||
bev_h_ = 50 | ||
bev_w_ = 50 | ||
queue_length = 3 # each sequence contains `queue_length` frames. | ||
|
||
model = dict( | ||
type='BEVFormer_fp16', | ||
use_grid_mask=True, | ||
video_test_mode=True, | ||
pretrained=dict(img='torchvision://resnet50'), | ||
img_backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(3,), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=False), | ||
norm_eval=True, | ||
style='pytorch'), | ||
img_neck=dict( | ||
type='FPN', | ||
in_channels=[2048], | ||
out_channels=_dim_, | ||
start_level=0, | ||
add_extra_convs='on_output', | ||
num_outs=_num_levels_, | ||
relu_before_extra_convs=True), | ||
pts_bbox_head=dict( | ||
type='BEVFormerHead', | ||
bev_h=bev_h_, | ||
bev_w=bev_w_, | ||
num_query=900, | ||
num_classes=10, | ||
in_channels=_dim_, | ||
sync_cls_avg_factor=True, | ||
with_box_refine=True, | ||
as_two_stage=False, | ||
transformer=dict( | ||
type='PerceptionTransformer', | ||
rotate_prev_bev=True, | ||
use_shift=True, | ||
use_can_bus=True, | ||
embed_dims=_dim_, | ||
encoder=dict( | ||
type='BEVFormerEncoder', | ||
num_layers=3, | ||
pc_range=point_cloud_range, | ||
num_points_in_pillar=4, | ||
return_intermediate=False, | ||
transformerlayers=dict( | ||
type='BEVFormerLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='TemporalSelfAttention', | ||
embed_dims=_dim_, | ||
num_levels=1), | ||
dict( | ||
type='SpatialCrossAttention', | ||
pc_range=point_cloud_range, | ||
deformable_attention=dict( | ||
type='MSDeformableAttention3D', | ||
embed_dims=_dim_, | ||
num_points=8, | ||
num_levels=_num_levels_), | ||
embed_dims=_dim_, | ||
) | ||
], | ||
feedforward_channels=_ffn_dim_, | ||
ffn_dropout=0.1, | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm'))), | ||
decoder=dict( | ||
type='DetectionTransformerDecoder', | ||
num_layers=6, | ||
return_intermediate=True, | ||
transformerlayers=dict( | ||
type='DetrTransformerDecoderLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='MultiheadAttention', | ||
embed_dims=_dim_, | ||
num_heads=8, | ||
dropout=0.1), | ||
dict( | ||
type='CustomMSDeformableAttention', | ||
embed_dims=_dim_, | ||
num_levels=1), | ||
], | ||
|
||
feedforward_channels=_ffn_dim_, | ||
ffn_dropout=0.1, | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm')))), | ||
bbox_coder=dict( | ||
type='NMSFreeCoder', | ||
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
pc_range=point_cloud_range, | ||
max_num=300, | ||
voxel_size=voxel_size, | ||
num_classes=10), | ||
positional_encoding=dict( | ||
type='LearnedPositionalEncoding', | ||
num_feats=_pos_dim_, | ||
row_num_embed=bev_h_, | ||
col_num_embed=bev_w_, | ||
), | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=2.0), | ||
loss_bbox=dict(type='L1Loss', loss_weight=0.25), | ||
loss_iou=dict(type='GIoULoss', loss_weight=0.0)), | ||
# model training and testing settings | ||
train_cfg=dict(pts=dict( | ||
grid_size=[512, 512, 1], | ||
voxel_size=voxel_size, | ||
point_cloud_range=point_cloud_range, | ||
out_size_factor=4, | ||
assigner=dict( | ||
type='HungarianAssigner3D', | ||
cls_cost=dict(type='FocalLossCost', weight=2.0), | ||
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), | ||
iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. | ||
pc_range=point_cloud_range)))) | ||
|
||
dataset_type = 'CustomNuScenesDataset' | ||
data_root = 'data/nuscenes/' | ||
file_client_args = dict(backend='disk') | ||
|
||
|
||
train_pipeline = [ | ||
dict(type='LoadMultiViewImageFromFiles', to_float32=True), | ||
dict(type='PhotoMetricDistortionMultiViewImage'), | ||
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectNameFilter', classes=class_names), | ||
dict(type='NormalizeMultiviewImage', **img_norm_cfg), | ||
dict(type='RandomScaleImageMultiViewImage', scales=[0.5]), | ||
dict(type='PadMultiViewImage', size_divisor=32), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='CustomCollect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img']) | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type='LoadMultiViewImageFromFiles', to_float32=True), | ||
dict(type='NormalizeMultiviewImage', **img_norm_cfg), | ||
|
||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1600, 900), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict(type='RandomScaleImageMultiViewImage', scales=[0.5]), | ||
dict(type='PadMultiViewImage', size_divisor=32), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='CustomCollect3D', keys=['img']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=8, | ||
train=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'nuscenes_infos_temporal_train.pkl', | ||
pipeline=train_pipeline, | ||
classes=class_names, | ||
modality=input_modality, | ||
test_mode=False, | ||
use_valid_flag=True, | ||
bev_size=(bev_h_, bev_w_), | ||
queue_length=queue_length, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR'), | ||
val=dict(type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'nuscenes_infos_temporal_val.pkl', | ||
pipeline=test_pipeline, bev_size=(bev_h_, bev_w_), | ||
classes=class_names, modality=input_modality, samples_per_gpu=1), | ||
test=dict(type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'nuscenes_infos_temporal_val.pkl', | ||
pipeline=test_pipeline, bev_size=(bev_h_, bev_w_), | ||
classes=class_names, modality=input_modality), | ||
shuffler_sampler=dict(type='DistributedGroupSampler'), | ||
nonshuffler_sampler=dict(type='DistributedSampler') | ||
) | ||
|
||
optimizer = dict( | ||
type='AdamW', | ||
lr=2.8e-4, | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'img_backbone': dict(lr_mult=0.1), | ||
}), | ||
weight_decay=0.01) | ||
|
||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# learning policy | ||
lr_config = dict( | ||
policy='CosineAnnealing', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
min_lr_ratio=1e-3) | ||
total_epochs = 24 | ||
evaluation = dict(interval=1, pipeline=test_pipeline) | ||
|
||
runner = dict(type='EpochBasedRunner_video', max_epochs=total_epochs) | ||
|
||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
fp16 = dict(loss_scale=512.) | ||
checkpoint_config = dict(interval=1) | ||
custom_hooks = [dict(type='TransferWeight',priority='LOWEST')] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from .bevformer import BEVFormer | ||
from .bevformer import BEVFormer | ||
from .bevformer_fp16 import BEVFormer_fp16 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.