🚧 Under Development.
A playground web app for the Darts API with Streamlit!
Featuring:
- Example datasets
- Upload your own dataset
- Model training tuning
- Model forecasting and plotting controls
- Dataset Seasonality, Trend, and other Metrics
- Error Metrics over forecasted periods
- Historical Forecasting
- Backtested Error Metrics
- Flexible forecasting horizon and stride for backtesting
- Downloadable forecasts and data
Use your own csv data that has a well formed time series and plot some forecasts!
Or use one of the example Darts datasets
- NaiveDrift
- NaiveMean
- NaiveSeasonal
- ARIMA
- VARIMA (Requires Multivariate dataset)
- ExponentialSmoothing
- LinearRegressionModel (Hand set Lag)
- FFT
- Theta
- FourTheta
- KalmanForecaster
- LightGBMModel
- RandomForest (Hand set Lag)
- RegressionModel
- Ensembles
- NaiveEnsembleModel
- EnsembleModel
- RegressionEnsembleModel
- Neural Net Based
- RNNModel (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version,True,True,True,True,False,True,DeepAR paper
- BlockRNNModel (incl. LSTM and GRU),True,True,True,True,True,False,
- NBEATSModel,True,True,True,True,True,False,N-BEATS paper
- TCNModel,True,True,True,True,True,False,"TCN paper, DeepTCN paper, blog post"
- TransformerModel,True,True,True,True,True,False,
- TFTModel (Temporal Fusion Transformer),True,True,True,True,True,True,"TFT paper, PyTorch Forecasting"
- Prophet
Cast to np.float32 to slightly speedup the training