Vanka smoothers #418
Triggered via pull request
October 29, 2024 01:42
Status
Failure
Total duration
1h 34m 40s
Artifacts
–
CI.yml
on: pull_request
Documentation
4m 27s
Matrix: test
Annotations
3 errors, 10 warnings, and 1 notice
|
Documentation
Process completed with exit code 1.
|
Julia 1.9 - ubuntu-latest - x64 - pull_request
Process completed with exit code 1.
|
Julia 1.9 - ubuntu-latest - x64 - pull_request
Your workflow is using a version of actions/cache that is scheduled for deprecation, actions/cache@v2. Please update your workflow to use the latest version of actions/cache to avoid interruptions. Learn more: https://github.blog/changelog/2024-09-16-notice-of-upcoming-deprecations-and-changes-in-github-actions-services/
|
Documentation:
../../../.julia/packages/Documenter/C1XEF/src/utilities/utilities.jl#L46
failed to run `@example` block in src/Examples/DarcyGMG.md:5-126
```@example DarcyGMG
module DarcyGMGApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.PatchBasedSmoothers
using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver
function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree)
patch_spaces = PatchFESpace(tests,patch_decompositions)
nlevs = num_levels(mh)
smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph
Vh = get_fe_space(tests)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
ap = (u,v) -> biform(u,v,dΩ)
patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh)
return RichardsonSmoother(patch_smoother,10,0.2)
end
return smoothers
end
function get_bilinear_form(mh_lev,biform,qdegree)
model = get_model(mh_lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
return (u,v) -> biform(u,v,dΩ)
end
function main(distribute,np,nc,np_per_level)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
mh = CartesianModelHierarchy(parts,np_per_level,domain,nc)
model = get_model(mh,1)
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(raviart_thomas,Float64,order-1)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_exact(x) = (Dc==2) ? VectorValue(x[1]+x[2],-x[2]) : VectorValue(x[1]+x[2],-x[2],0.0)
p_exact(x) = 2.0*x[1]-1.0
tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["boundary"]);
trials_u = TrialFESpace(tests_u,[u_exact]);
U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1)
Q = TestFESpace(model,reffe_p;conformity=:L2)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
α = 1.e2
f(x) = u_exact(x) + ∇(p_exact)(x)
graddiv(u,v,dΩ) = ∫(α*divergence(u)⋅divergence(v))dΩ
biform_u(u,v,dΩ) = ∫(v⊙u)dΩ + graddiv(u,v,dΩ)
biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
liform((v,q),dΩ) = ∫(v⋅f)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
a(u,v) = biform(u,v,dΩ)
l(v) = liform(v,dΩ)
op = AffineFEOperator(a,l,X,Y)
A, b = get_matrix(op), get_vector(op);
biforms = map(mhl -> get_bilinear_form(mhl,biform_u,qdegree),mh)
patch_decompositions = PatchDecomposition(mh)
smoothers = get_patch_smoothers(
mh,tests_u,biform_u,patch_decompositions,qdegree
)
prolongations = setup_prolongation_operators(
tests_u,qdegree;mode=:residual
)
restrictions = setup_restriction_operators(
tests_u,qdegree;mode=:residual,solver=IS_ConjugateGradientSolver(;reltol=1.e-6)
)
gmg = GMGLinearSolver(
mh,trials_u,tests_u,biforms,
prolongations,restrictions,
pre_smoothers=smoothers,
post_smoothers=smoothers,
coarsest_solver=LUSolver(),
maxiter=3,mode=:preconditioner,verbose=i_am_main(parts)
)
solver_u = gmg
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_p.log.depth = 2
bblocks = [LinearSystemBlock() LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-1.0/α*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-14,rtol=1.e-10,verbose=i_am_main(parts))
ns = numerical_setup(symbolic_setup(solver,A),A)
x = allocate_in_domain(A); fill!(x,0.0)
solve!(x,ns,b)
r = allocate_in_range(A)
mul!(r,A,x)
r .-= b
@test norm(r) < 1.e-5
end
end # module
```
exception =
ArgumentError: Package FillArrays not found in current path.
- Run `import Pkg; Pkg.add("FillArrays")` to install the FillArrays package.
Sta
|
Documentation:
../../../.julia/packages/Documenter/C1XEF/src/utilities/utilities.jl#L46
failed to run `@example` block in src/Examples/NavierStokes.md:29-128
```@example NavierStokes
module NavierStokesApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.NonlinearSolvers
using GridapSolvers.BlockSolvers: LinearSystemBlock, NonlinearSystemBlock, BiformBlock, BlockTriangularSolver
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
model = CartesianDiscreteModel(parts,np,domain,nc)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
add_labels!(get_face_labeling(model))
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
V = TestFESpace(model,reffe_u,dirichlet_tags=["walls","top"]);
U = TrialFESpace(V,[u_walls,u_top]);
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
Re = 10.0
ν = 1/Re
α = 1.e2
f = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
Π_Qh = LocalProjectionMap(divergence,Q,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
conv(u,∇u) = (∇u')⋅u
dconv(du,∇du,u,∇u) = conv(u,∇du)+conv(du,∇u)
c(u,v,dΩ) = ∫(v⊙(conv∘(u,∇(u))))dΩ
dc(u,du,dv,dΩ) = ∫(dv⊙(dconv∘(du,∇(du),u,∇(u))))dΩ
lap(u,v,dΩ) = ∫(ν*∇(v)⊙∇(u))dΩ
rhs(v,dΩ) = ∫(v⋅f)dΩ
jac_u(u,du,dv,dΩ) = lap(du,dv,dΩ) + dc(u,du,dv,dΩ) + graddiv(du,dv,dΩ)
jac((u,p),(du,dp),(dv,dq),dΩ) = jac_u(u,du,dv,dΩ) - ∫(divergence(dv)*dp)dΩ - ∫(divergence(du)*dq)dΩ
res_u(u,v,dΩ) = lap(u,v,dΩ) + c(u,v,dΩ) + graddiv(u,v,dΩ) - rhs(v,dΩ)
res((u,p),(v,q),dΩ) = res_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
jac_h(x,dx,dy) = jac(x,dx,dy,dΩ)
res_h(x,dy) = res(x,dy,dΩ)
op = FEOperator(res_h,jac_h,X,Y)
solver_u = LUSolver()
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_p.log.depth = 4
bblocks = [NonlinearSystemBlock() LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-(1.0/α)*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-11,rtol=1.e-8,verbose=i_am_main(parts))
solver.log.depth = 2
nlsolver = NewtonSolver(solver;maxiter=20,atol=1e-10,rtol=1.e-12,verbose=i_am_main(parts))
xh = solve(nlsolver,op);
@test true
end
end # module
```
exception =
ArgumentError: Package FillArrays not found in current path.
- Run `import Pkg; Pkg.add("FillArrays")` to install the FillArrays package.
Stacktrace:
[1] macro expansion
@ ./loading.jl:2223 [inlined]
[2] macro expansion
@ ./lock.jl:273 [inlined]
[3] __require(into::Module, mod::Symbol)
@ Base ./loading.jl:2198
[4] #invoke_in_world#3
@ ./essentials.jl:1089 [inlined]
[5] invoke_in_world
@ ./essentials.jl:1086 [inlined]
[6] require(into::Module, mod::Symbol)
@ Base ./loading.jl:2191
[7] eval
@ ./boot.jl:430 [inlined]
[8] #60
@ ~/.julia/packages/Documenter/C1XE
|
Documentation:
../../../.julia/packages/Documenter/C1XEF/src/utilities/utilities.jl#L46
failed to run `@example` block in src/Examples/NavierStokesGMG.md:31-175
```@example NavierStokesGMG
module NavierStokesGMGApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapP4est
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools
using GridapSolvers.PatchBasedSmoothers, GridapSolvers.NonlinearSolvers
using GridapSolvers.BlockSolvers: NonlinearSystemBlock, LinearSystemBlock, BiformBlock, BlockTriangularSolver
function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree;is_nonlinear=false)
patch_spaces = PatchFESpace(tests,patch_decompositions)
nlevs = num_levels(mh)
smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph
Vh = get_fe_space(tests)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
ap = (u,du,dv) -> biform(u,du,dv,dΩ)
patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh;is_nonlinear)
return RichardsonSmoother(patch_smoother,10,0.2)
end
return smoothers
end
function get_trilinear_form(mh_lev,triform,qdegree)
model = get_model(mh_lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
return (u,du,dv) -> triform(u,du,dv,dΩ)
end
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc,np_per_level)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
mh = CartesianModelHierarchy(parts,np_per_level,domain,nc;add_labels! = add_labels!)
model = get_model(mh,1)
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["walls","top"]);
trials_u = TrialFESpace(tests_u,[u_walls,u_top]);
U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1)
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
Re = 10.0
ν = 1/Re
α = 1.e2
f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0)
Π_Qh = LocalProjectionMap(divergence,reffe_p,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
conv(u,∇u) = (∇u')⋅u
dconv(du,∇du,u,∇u) = conv(u,∇du)+conv(du,∇u)
c(u,v,dΩ) = ∫(v⊙(conv∘(u,∇(u))))dΩ
dc(u,du,dv,dΩ) = ∫(dv⊙(dconv∘(du,∇(du),u,∇(u))))dΩ
lap(u,v,dΩ) = ∫(ν*∇(v)⊙∇(u))dΩ
rhs(v,dΩ) = ∫(v⋅f)dΩ
jac_u(u,du,dv,dΩ) = lap(du,dv,dΩ) + dc(u,du,dv,dΩ) + graddiv(du,dv,dΩ)
jac((u,p),(du,dp),(dv,dq),dΩ) = jac_u(u,du,dv,dΩ) - ∫(divergence(dv)*dp)dΩ - ∫(divergence(du)*dq)dΩ
res_u(u,v,dΩ) = lap(u,v,dΩ) + c(u,v,dΩ) + graddiv(u,v,dΩ) - rhs(v,dΩ)
res((u,p),(v,q),dΩ) = res_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
jac_h(x,dx,dy) = jac(x,dx,dy,dΩ)
res_h(x,dy) = res(x,dy,dΩ)
op = FEOperator(res_h,jac_h,X,Y)
biforms = map(mhl -> get_trilinear_form(mhl,jac_u,qdegree),mh)
patch_decompositions = PatchDecomposition(mh)
smoothers = get_patch_smoothers(
mh,trials_u,jac_u,patch_decompositions,qdegree;is_nonlinear=true
)
prolongations = setup_patch_prolongation_operators(
tests_u,jac_u,graddiv,qdegree;is_nonlinear=true
)
restrictions = setup_patch_restriction_operators(
tests_u,prolongations,graddiv,qdegree;solver=IS_ConjugateGradientSolver(;
|
Documentation:
../../../.julia/packages/Documenter/C1XEF/src/utilities/utilities.jl#L46
failed to run `@example` block in src/Examples/Stokes.md:29-120
```@example Stokes
module StokesApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools
using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
model = CartesianDiscreteModel(parts,np,domain,nc)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
add_labels!(get_face_labeling(model))
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
V = TestFESpace(model,reffe_u,dirichlet_tags=["walls","top"]);
U = TrialFESpace(V,[u_walls,u_top]);
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
α = 1.e2
f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0)
Π_Qh = LocalProjectionMap(divergence,Q,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
biform_u(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + graddiv(u,v,dΩ)
biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
liform((v,q),dΩ) = ∫(v⋅f)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
a(u,v) = biform(u,v,dΩ)
l(v) = liform(v,dΩ)
op = AffineFEOperator(a,l,X,Y)
A, b = get_matrix(op), get_vector(op);
solver_u = LUSolver()
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_p.log.depth = 2
bblocks = [LinearSystemBlock() LinearSystemBlock();
LinearSystemBlock() BiformBlock((p,q) -> ∫(-(1.0/α)*p*q)dΩ,Q,Q)]
coeffs = [1.0 1.0;
0.0 1.0]
P = BlockTriangularSolver(bblocks,[solver_u,solver_p],coeffs,:upper)
solver = FGMRESSolver(20,P;atol=1e-10,rtol=1.e-12,verbose=i_am_main(parts))
ns = numerical_setup(symbolic_setup(solver,A),A)
x = allocate_in_domain(A); fill!(x,0.0)
solve!(x,ns,b)
r = allocate_in_range(A)
mul!(r,A,x)
r .-= b
@test norm(r) < 1.e-7
end
end # module
```
exception =
ArgumentError: Package FillArrays not found in current path.
- Run `import Pkg; Pkg.add("FillArrays")` to install the FillArrays package.
Stacktrace:
[1] macro expansion
@ ./loading.jl:2223 [inlined]
[2] macro expansion
@ ./lock.jl:273 [inlined]
[3] __require(into::Module, mod::Symbol)
@ Base ./loading.jl:2198
[4] #invoke_in_world#3
@ ./essentials.jl:1089 [inlined]
[5] invoke_in_world
@ ./essentials.jl:1086 [inlined]
[6] require(into::Module, mod::Symbol)
@ Base ./loading.jl:2191
[7] eval
@ ./boot.jl:430 [inlined]
[8] #60
@ ~/.julia/packages/Documenter/C1XEF/src/expander_pipeline.jl:754 [inlined]
[9] cd(f::Documenter.var"#60#62"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[10] (::Documenter.var"#59#61"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/C1XEF/src/expander_pipeline.jl:753
[11] (::IOCapture.var"#5#9"{DataType, Documenter.var"#59#61"{Documenter.Page, Module, Expr}, IOContext{Base.PipeEndpoi
|
Documentation:
../../../.julia/packages/Documenter/C1XEF/src/utilities/utilities.jl#L46
failed to run `@example` block in src/Examples/StokesGMG.md:31-168
```@example StokesGMG
module StokesGMGApplication
using Test
using LinearAlgebra
using FillArrays, BlockArrays
using Gridap
using Gridap.ReferenceFEs, Gridap.Algebra, Gridap.Geometry, Gridap.FESpaces
using Gridap.CellData, Gridap.MultiField, Gridap.Algebra
using PartitionedArrays
using GridapDistributed
using GridapP4est
using GridapSolvers
using GridapSolvers.LinearSolvers, GridapSolvers.MultilevelTools, GridapSolvers.PatchBasedSmoothers
using GridapSolvers.BlockSolvers: LinearSystemBlock, BiformBlock, BlockTriangularSolver
function get_patch_smoothers(mh,tests,biform,patch_decompositions,qdegree)
patch_spaces = PatchFESpace(tests,patch_decompositions)
nlevs = num_levels(mh)
smoothers = map(view(tests,1:nlevs-1),patch_decompositions,patch_spaces) do tests, PD, Ph
Vh = get_fe_space(tests)
Ω = Triangulation(PD)
dΩ = Measure(Ω,qdegree)
ap = (u,v) -> biform(u,v,dΩ)
patch_smoother = PatchBasedLinearSolver(ap,Ph,Vh)
return RichardsonSmoother(patch_smoother,10,0.2)
end
return smoothers
end
function get_bilinear_form(mh_lev,biform,qdegree)
model = get_model(mh_lev)
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
return (u,v) -> biform(u,v,dΩ)
end
function add_labels_2d!(labels)
add_tag_from_tags!(labels,"top",[6])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,7,8])
end
function add_labels_3d!(labels)
add_tag_from_tags!(labels,"top",[22])
add_tag_from_tags!(labels,"walls",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26])
end
function main(distribute,np,nc,np_per_level)
parts = distribute(LinearIndices((prod(np),)))
Dc = length(nc)
domain = (Dc == 2) ? (0,1,0,1) : (0,1,0,1,0,1)
add_labels! = (Dc == 2) ? add_labels_2d! : add_labels_3d!
mh = CartesianModelHierarchy(parts,np_per_level,domain,nc;add_labels! = add_labels!)
model = get_model(mh,1)
order = 2
qdegree = 2*(order+1)
reffe_u = ReferenceFE(lagrangian,VectorValue{Dc,Float64},order)
reffe_p = ReferenceFE(lagrangian,Float64,order-1;space=:P)
u_walls = (Dc==2) ? VectorValue(0.0,0.0) : VectorValue(0.0,0.0,0.0)
u_top = (Dc==2) ? VectorValue(1.0,0.0) : VectorValue(1.0,0.0,0.0)
tests_u = TestFESpace(mh,reffe_u,dirichlet_tags=["walls","top"]);
trials_u = TrialFESpace(tests_u,[u_walls,u_top]);
U, V = get_fe_space(trials_u,1), get_fe_space(tests_u,1)
Q = TestFESpace(model,reffe_p;conformity=:L2,constraint=:zeromean)
mfs = Gridap.MultiField.BlockMultiFieldStyle()
X = MultiFieldFESpace([U,Q];style=mfs)
Y = MultiFieldFESpace([V,Q];style=mfs)
α = 1.e2
f = (Dc==2) ? VectorValue(1.0,1.0) : VectorValue(1.0,1.0,1.0)
Π_Qh = LocalProjectionMap(divergence,reffe_p,qdegree)
graddiv(u,v,dΩ) = ∫(α*(∇⋅v)⋅Π_Qh(u))dΩ
biform_u(u,v,dΩ) = ∫(∇(v)⊙∇(u))dΩ + graddiv(u,v,dΩ)
biform((u,p),(v,q),dΩ) = biform_u(u,v,dΩ) - ∫(divergence(v)*p)dΩ - ∫(divergence(u)*q)dΩ
liform((v,q),dΩ) = ∫(v⋅f)dΩ
Ω = Triangulation(model)
dΩ = Measure(Ω,qdegree)
a(u,v) = biform(u,v,dΩ)
l(v) = liform(v,dΩ)
op = AffineFEOperator(a,l,X,Y)
A, b = get_matrix(op), get_vector(op);
biforms = map(mhl -> get_bilinear_form(mhl,biform_u,qdegree),mh)
patch_decompositions = PatchDecomposition(mh)
smoothers = get_patch_smoothers(
mh,tests_u,biform_u,patch_decompositions,qdegree
)
prolongations = setup_patch_prolongation_operators(
tests_u,biform_u,graddiv,qdegree
)
restrictions = setup_patch_restriction_operators(
tests_u,prolongations,graddiv,qdegree;solver=CGSolver(JacobiLinearSolver())
)
gmg = GMGLinearSolver(
mh,trials_u,tests_u,biforms,
prolongations,restrictions,
pre_smoothers=smoothers,
post_smoothers=smoothers,
coarsest_solver=LUSolver(),
maxiter=4,mode=:preconditioner,verbose=i_am_main(parts)
)
solver_u = gmg
solver_p = CGSolver(JacobiLinearSolver();maxiter=20,atol=1e-14,rtol=1.e-6,verbose=i_am_main(parts))
solver_u.log.depth = 2
solver_p.log.depth = 2
diag_blocks = [LinearSystemBlock(),BiformBlock((p,q) -> ∫(-1.0/α*p*q)dΩ,Q,Q)]
bblocks = map(CartesianIndic
|
Documentation
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/checkout@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
|
Documentation
The following actions use a deprecated Node.js version and will be forced to run on node20: actions/checkout@v2, julia-actions/setup-julia@v1. For more info: https://github.blog/changelog/2024-03-07-github-actions-all-actions-will-run-on-node20-instead-of-node16-by-default/
|
Julia 1.9 - ubuntu-latest - x64 - pull_request
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/checkout@v2, actions/cache@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
|
Julia 1.9 - ubuntu-latest - x64 - pull_request
The following actions use a deprecated Node.js version and will be forced to run on node20: actions/checkout@v2, actions/cache@v2, julia-actions/setup-julia@v1. For more info: https://github.blog/changelog/2024-03-07-github-actions-all-actions-will-run-on-node20-instead-of-node16-by-default/
|
[julia-buildpkg] Caching of the julia depot was not detected
Consider using `julia-actions/cache` to speed up runs https://github.com/julia-actions/cache. To ignore, set input `ignore-no-cache: true`
|