Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Invalid LLVM error from hl.is_inf(float16) #8309

Closed
jansel opened this issue Jun 21, 2024 · 2 comments · Fixed by #8310
Closed

Invalid LLVM error from hl.is_inf(float16) #8309

jansel opened this issue Jun 21, 2024 · 2 comments · Fixed by #8310

Comments

@jansel
Copy link
Contributor

jansel commented Jun 21, 2024

Repro:

import halide as hl


@hl.generator(name="kernel")
class Kernel:
    in_ptr0 = hl.InputBuffer(hl.Float(16), 2)
    out_ptr3 = hl.OutputBuffer(hl.Bool(), 1)

    def generate(g):
        in_ptr0 = g.in_ptr0
        out_ptr3 = g.out_ptr3
        h0 = hl.Var("h0")
        h1 = hl.Var("h1")
        rdom = hl.RDom([hl.Range(0, 768)])
        hr1 = rdom[0]
        tmp0 = hl.Func("tmp0")
        tmp0[h0, h1] = hl.cast(
            hl.Float(16),
            in_ptr0[
                h0,
                h1,
            ],
        )
        tmp27 = hl.Func("tmp27")
        tmp27[h0, h1] = hl.is_inf(tmp0[h0, h1])
        tmp28 = hl.Func("tmp28")
        tmp28[h1] = hl.maximum(rdom, tmp27[hr1, h1])
        out_ptr3[h1,] = hl.cast(hl.Bool(), tmp28[h1])

        assert g.using_autoscheduler()
        in_ptr0.dim(0).set_min(0)
        in_ptr0.dim(0).set_stride(1)
        in_ptr0.dim(0).set_extent(768)
        in_ptr0.dim(1).set_min(0)
        in_ptr0.dim(1).set_stride(768)
        in_ptr0.dim(1).set_extent(512)
        in_ptr0.set_estimates([hl.Range(0, 768), hl.Range(0, 512)])
        out_ptr3.set_estimates([hl.Range(0, 512)])


if __name__ == "__main__":
    import sys, tempfile

    with tempfile.TemporaryDirectory() as out:
        sys.argv = [
            "repro.py",
            "-g",
            "kernel",
            "-o",
            out,
            "-f",
            "halide_kernel",
            "-e",
            "static_library,h,schedule",
            "-p",
            "/home/jansel/conda/envs/pytorch/lib/libautoschedule_anderson2021.so",
            "target=host-cuda-cuda_capability_86-user_context-strict_float-no_runtime-no_asserts",
            "autoscheduler=Anderson2021",
            "autoscheduler.parallelism=82",
        ]
        hl.main()

else:
    hl.load_plugin(
        "/home/jansel/conda/envs/pytorch/lib/libautoschedule_anderson2021.so"
    )
    target = hl.Target(
        "host-cuda-cuda_capability_86-user_context-strict_float-no_runtime-no_asserts"
    )
    autoscheduler = hl.AutoschedulerParams("Anderson2021", {"parallelism": 82})
    with hl.GeneratorContext(target, autoscheduler):
        gen = Kernel()
        pipeline = gen._build_pipeline()
        # gen.compile_to_callable() does not run the autoscheduler
        pipeline.apply_autoscheduler(target, autoscheduler)
        kernel = pipeline.compile_to_callable(
            [
                gen._get_input_parameter(a.name)._to_argument()
                for a in gen._get_arginfos()
                if a.dir == hl.ArgInfoDirection.Input
            ],
            target,
        )

Output:

Unhandled exception: Internal Error at /home/jansel/Halide/src/CodeGen_LLVM.cpp:1336 triggered by user code at : Condition failed: types_match: Codegen of Expr (float32)is_inf_f32((float32)strict_float(reinterpret<float32>((uint32)bitwise_or((uint32)shift_left(uint32((uint16)bitwise_and((uint16)t266, (uint16)32768)), (uint32)16), select((uint16)t267 == (uint16)0, (uint32)0, select((uint16)t267 < (uint16)1024, reinterpret<uint32>((float32)strict_float(float32((uint16)t267))) - (uint32)201326592, select((uint16)t267 >= (uint16)31744, (uint32)bitwise_or((uint32)t268, (uint32)2139095040), (uint32)t268 + (uint32)939524096))))))) of type float32 did not produce llvm IR of the corresponding llvm type.

Traceback (most recent call last):
  File "/home/jansel/pytorch/repro.py", line 61, in <module>
    hl.main()
RuntimeError: Generator failed: -1

It works with 32 bit however:

diff --git a/repro.py b/repro.py
index 8ce5bd5a9eb..236e4a9784a 100644
--- a/repro.py
+++ b/repro.py
@@ -15,7 +15,7 @@ class Kernel:
         hr1 = rdom[0]
         tmp0 = hl.Func("tmp0")
         tmp0[h0, h1] = hl.cast(
-            hl.Float(16),
+            hl.Float(32),
             in_ptr0[
                 h0,
                 h1,
@jansel
Copy link
Contributor Author

jansel commented Jun 21, 2024

Looks like hl.is_nan() has the same issue.

@abadams
Copy link
Member

abadams commented Jun 21, 2024

Oh I see the bug. It's in EmulateFloat16Math.cpp. It rewrites all float16 transcendentals/intrinsics to their float32 equivalents, but it just assumes these functions return float

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants