forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request PaddlePaddle#28 from mthreads/fix_automicadd
[MTAI-484] fix(build): recover some deleted files
- Loading branch information
Showing
7 changed files
with
1,328 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#if !defined(PADDLE_WITH_HIP) && !defined(PADDLE_WITH_MUSA) | ||
// HIP and MUSA not support cusolver | ||
|
||
#include "paddle/phi/kernels/cholesky_kernel.h" | ||
|
||
#include <thrust/device_vector.h> | ||
|
||
#include <algorithm> | ||
#include <vector> | ||
|
||
#include "paddle/phi/backends/dynload/cusolver.h" | ||
#include "paddle/phi/backends/gpu/gpu_context.h" | ||
#include "paddle/phi/common/memory_utils.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/funcs/for_range.h" | ||
|
||
namespace phi { | ||
|
||
template <typename T> | ||
struct MatrixBandPartFunctor { | ||
/*! Set output as input value outside a central band and 0 inside that band. | ||
* That is: output[i, j, ..., m, n] = in_band(m, n) * input[i, j, ..., m, n] | ||
* where: in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) && (num_upper | ||
* < 0 || (n-m) <= num_upper) | ||
*/ | ||
MatrixBandPartFunctor(const int m, | ||
const int n, | ||
const int num_lower_diags, | ||
const int num_upper_diags, | ||
const T* input, | ||
T* output) | ||
: m_(m), | ||
n_(n), | ||
num_lower_diags_(num_lower_diags), | ||
num_upper_diags_(num_upper_diags), | ||
input_(input), | ||
output_(output) {} | ||
|
||
HOSTDEVICE void operator()(size_t index) const { | ||
const int col = index % n_; | ||
const int row = (index / n_) % m_; | ||
const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_); | ||
const int band_end = | ||
(num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1); | ||
if (col < band_start || col >= band_end) { | ||
output_[index] = static_cast<T>(0); | ||
} else { | ||
output_[index] = input_[index]; | ||
} | ||
} | ||
|
||
const int m_, n_, num_lower_diags_, num_upper_diags_; | ||
const T* input_; | ||
T* output_; | ||
}; | ||
|
||
#define FUNC_WITH_TYPES(m) m(float, S) m(double, D) | ||
|
||
#define POTRF_INSTANCE(T, C) \ | ||
void Potrf(const GPUContext& dev_ctx, \ | ||
cublasFillMode_t uplo, \ | ||
int n, \ | ||
T* A, \ | ||
int lda, \ | ||
int* info) { \ | ||
auto handle = dev_ctx.cusolver_dn_handle(); \ | ||
int workspace_size = 0; \ | ||
PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##potrf_bufferSize( \ | ||
handle, uplo, n, A, lda, &workspace_size)); \ | ||
auto workspace = phi::memory_utils::Alloc( \ | ||
dev_ctx.GetPlace(), \ | ||
workspace_size * sizeof(T), \ | ||
phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream()))); \ | ||
T* workspace_ptr = reinterpret_cast<T*>(workspace->ptr()); \ | ||
PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##potrf( \ | ||
handle, uplo, n, A, lda, workspace_ptr, workspace_size, info)); \ | ||
} | ||
|
||
FUNC_WITH_TYPES(POTRF_INSTANCE); | ||
|
||
#if CUDA_VERSION >= 9020 && !defined(_WIN32) | ||
#define POTRF_BATCH_INSTANCE(T, C) \ | ||
void PotrfBatched(const GPUContext& dev_ctx, \ | ||
cublasFillMode_t uplo, \ | ||
int n, \ | ||
T* Aarray[], \ | ||
int lda, \ | ||
int* info_array, \ | ||
int batch_size) { \ | ||
auto handle = dev_ctx.cusolver_dn_handle(); \ | ||
PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##potrfBatched( \ | ||
handle, uplo, n, Aarray, lda, info_array, batch_size)); \ | ||
} | ||
|
||
FUNC_WITH_TYPES(POTRF_BATCH_INSTANCE); | ||
#endif | ||
|
||
template <typename T, typename Context> | ||
void CholeskyKernel(const Context& dev_ctx, | ||
const DenseTensor& x, | ||
bool upper, | ||
DenseTensor* out) { | ||
auto& dims = x.dims(); | ||
int batch_count = 1; | ||
for (int i = 0; i < dims.size() - 2; i++) { | ||
batch_count *= dims[i]; | ||
} | ||
int m = dims[dims.size() - 1]; | ||
int tensor_size = batch_count * m * m; | ||
|
||
const auto* x_data = x.data<T>(); | ||
auto* out_data = dev_ctx.template Alloc<T>(out); | ||
|
||
// matrices are assumed to be stored in column-major order in cusolver | ||
cublasFillMode_t uplo = | ||
upper ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER; | ||
// portf is inplace, thus copy the triangular part of the input matrices to | ||
// the output and set the other triangular part to 0 firstly | ||
phi::funcs::ForRange<GPUContext> for_range(dev_ctx, tensor_size); | ||
if (upper) { | ||
MatrixBandPartFunctor<T> matrix_band_part_functor(m, | ||
m, | ||
/* num_lower_diags */ 0, | ||
/* num_upper_diags */ m, | ||
x_data, | ||
out_data); | ||
for_range(matrix_band_part_functor); | ||
} else { | ||
MatrixBandPartFunctor<T> matrix_band_part_functor(m, | ||
m, | ||
/* num_lower_diags */ m, | ||
/* num_upper_diags */ 0, | ||
x_data, | ||
out_data); | ||
for_range(matrix_band_part_functor); | ||
} | ||
|
||
auto info = phi::memory_utils::Alloc( | ||
dev_ctx.GetPlace(), | ||
sizeof(int) * batch_count, | ||
phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream()))); | ||
auto* info_ptr = reinterpret_cast<int*>(info->ptr()); | ||
|
||
#if CUDA_VERSION >= 9020 && !defined(_WIN32) | ||
if (batch_count > 1) { | ||
std::vector<T*> output_ptrs; | ||
for (int i = 0; i < batch_count; i++) { | ||
output_ptrs.emplace_back(out_data + i * m * m); | ||
} | ||
thrust::device_vector<T*> dev_output_ptrs(output_ptrs.begin(), | ||
output_ptrs.end()); | ||
PotrfBatched(dev_ctx, | ||
uplo, | ||
m, | ||
thrust::raw_pointer_cast(dev_output_ptrs.data()), | ||
m, | ||
info_ptr, | ||
batch_count); | ||
// TODO(guosheng): There seems to a bug in cusolver potrfBatched and need | ||
// to clear the upper triangle of the output. Remove this workaround once | ||
// the bug is fixed. | ||
if (!upper) { | ||
MatrixBandPartFunctor<T> matrix_band_part_functor(m, | ||
m, | ||
/* num_lower_diags */ m, | ||
/* num_upper_diags */ 0, | ||
out_data, | ||
out_data); | ||
for_range(matrix_band_part_functor); | ||
} | ||
} else { | ||
#endif | ||
for (int i = 0; i < batch_count; i++) { | ||
Potrf(dev_ctx, uplo, m, out_data + i * m * m, m, info_ptr + i); | ||
} | ||
|
||
#if CUDA_VERSION >= 9020 && !defined(_WIN32) | ||
} | ||
#endif | ||
// check the info | ||
std::vector<int> error_info; // only for checking positive matrix | ||
error_info.resize(batch_count); | ||
|
||
memory_utils::Copy(CPUPlace(), | ||
error_info.data(), | ||
dev_ctx.GetPlace(), | ||
info_ptr, | ||
sizeof(int) * batch_count, | ||
dev_ctx.stream()); | ||
|
||
for (int i = 0; i < batch_count; ++i) { | ||
PADDLE_ENFORCE_EQ(error_info[i], | ||
0, | ||
errors::PreconditionNotMet( | ||
"For batch [%d]: U(%d, %d) is zero, singular U.", | ||
i, | ||
error_info[i], | ||
error_info[i])); | ||
} | ||
} | ||
|
||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(cholesky, // cuda_only | ||
GPU, | ||
ALL_LAYOUT, | ||
phi::CholeskyKernel, | ||
float, | ||
double) {} | ||
|
||
#endif // not PADDLE_WITH_HIP && not PADDLE_WITH_MUSA |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#if !defined(PADDLE_WITH_HIP) && !defined(PADDLE_WITH_MUSA) | ||
// HIP and MUSA not support cusolver | ||
|
||
#include "paddle/phi/backends/dynload/cusolver.h" | ||
#include "paddle/phi/backends/gpu/gpu_context.h" | ||
#include "paddle/phi/common/complex.h" | ||
#include "paddle/phi/core/enforce.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h" | ||
#include "paddle/phi/kernels/impl/cholesky_solve_kernel_impl.h" | ||
|
||
namespace phi { | ||
|
||
template <typename T> | ||
void cusolver_potrs(const solverHandle_t &handle, | ||
cublasFillMode_t uplo, | ||
int M, | ||
int N, | ||
T *Adata, | ||
int lda, | ||
T *Bdata, | ||
int ldb, | ||
int *devInfo); | ||
|
||
template <> | ||
void cusolver_potrs<float>(const solverHandle_t &handle, | ||
cublasFillMode_t uplo, | ||
int M, | ||
int N, | ||
float *Adata, | ||
int lda, | ||
float *Bdata, | ||
int ldb, | ||
int *devInfo) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnSpotrs( | ||
handle, uplo, M, N, Adata, lda, Bdata, ldb, devInfo)); | ||
} | ||
|
||
template <> | ||
void cusolver_potrs<double>(const solverHandle_t &handle, | ||
cublasFillMode_t uplo, | ||
int M, | ||
int N, | ||
double *Adata, | ||
int lda, | ||
double *Bdata, | ||
int ldb, | ||
int *devInfo) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnDpotrs( | ||
handle, uplo, M, N, Adata, lda, Bdata, ldb, devInfo)); | ||
} | ||
|
||
template <> | ||
void cusolver_potrs<phi::dtype::complex<float>>( | ||
const solverHandle_t &handle, | ||
cublasFillMode_t uplo, | ||
int M, | ||
int N, | ||
phi::dtype::complex<float> *Adata, | ||
int lda, | ||
phi::dtype::complex<float> *Bdata, | ||
int ldb, | ||
int *devInfo) { | ||
PADDLE_ENFORCE_GPU_SUCCESS( | ||
dynload::cusolverDnCpotrs(handle, | ||
uplo, | ||
M, | ||
N, | ||
reinterpret_cast<const cuComplex *>(Adata), | ||
lda, | ||
reinterpret_cast<cuComplex *>(Bdata), | ||
ldb, | ||
devInfo)); | ||
} | ||
|
||
template <> | ||
void cusolver_potrs<phi::dtype::complex<double>>( | ||
const cusolverDnHandle_t &handle, | ||
cublasFillMode_t uplo, | ||
int M, | ||
int N, | ||
phi::dtype::complex<double> *Adata, | ||
int lda, | ||
phi::dtype::complex<double> *Bdata, | ||
int ldb, | ||
int *devInfo) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnZpotrs( | ||
handle, | ||
uplo, | ||
M, | ||
N, | ||
reinterpret_cast<const cuDoubleComplex *>(Adata), | ||
lda, | ||
reinterpret_cast<cuDoubleComplex *>(Bdata), | ||
ldb, | ||
devInfo)); | ||
} | ||
|
||
template <typename T> | ||
class CholeskySolveFunctor<T, GPUContext> { | ||
public: | ||
void operator()(const GPUContext &dev_ctx, | ||
bool upper, | ||
int M, | ||
int N, | ||
T *Adata, | ||
int lda, | ||
T *Bdata, | ||
int *devInfo) { | ||
cublasFillMode_t uplo = | ||
upper ? CUBLAS_FILL_MODE_UPPER : CUBLAS_FILL_MODE_LOWER; | ||
auto handle = dev_ctx.cusolver_dn_handle(); | ||
cusolver_potrs<T>(handle, uplo, M, N, Adata, lda, Bdata, lda, devInfo); | ||
} | ||
}; | ||
|
||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(cholesky_solve, // cuda_only | ||
GPU, | ||
ALL_LAYOUT, | ||
phi::CholeskySolveKernel, | ||
float, | ||
double) {} | ||
|
||
#endif // not PADDLE_WITH_HIP && not PADDLE_WITH_MUSA |
Oops, something went wrong.