-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_elite360d.py
36 lines (26 loc) · 1.43 KB
/
eval_elite360d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from __future__ import absolute_import, division, print_function
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
import argparse
from Tester.tester_elite360d import Tester
parser = argparse.ArgumentParser(description="360 Degree Panorama Depth Estimation Training")
# models settings
parser.add_argument("--model_name", type=str, default="",
choices=['Elite360D_R18', 'Elite360D_R34', 'Elite360D_R50',
'Elite360D_Effb5', 'Elite360D_SwinT', 'Elite360D_SwinB',
'Elite360D_DilateT'], help="folder to save the models in")
# system settings
parser.add_argument("--num_workers", type=int, default=32, help="number of dataloader workers")
parser.add_argument("--gpu_devices", type=int, nargs="+", default=[0], help="available gpus")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
# loading and logging setting
parser.add_argument("--load_weights_dir", default=None, type=str,
help="folder of models to load") # , default='./tmp/panodepth/models/weights_pretrain'
parser.add_argument("--log_dir", type=str, default=os.path.join(os.path.dirname(__file__), "tmp"), help="log directory")
parser.add_argument("--log_frequency", type=int, default=200, help="number of batches between each tensorboard log")
args = parser.parse_args()
def main():
tester = Tester(args)
tester.validate()
if __name__ == "__main__":
main()