Office source code of paper Elite360D: Towards Efficient 360 Depth Estimation via Semantic- and Distance-Aware Bi-Projection Fusion, Arxiv, Project
Environments
- python 3.10
- Pytorch >= 1.12.0
- CUDA >= 11.3
Install requirements
pip install -r requirements.txt
Please download the preferred datasets, i.e., Matterport3D, Stanford2D3D, and Structured3D. For Matterport3D and Stanford2D3D, please preprocess them following UniFuse.
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node 2 --master_port 29221 train_elite360d.py --model_name Elite360D_R18 --log_dir ./workdirs --dataset_root_dir $DATASET_ROOT_DIR --gpu_devices 1 2 --batch_size 4
It is similar for other datasets.
CUDA_VISIBLE_DEVICES=0 python eval_elite360d.py --model_name $MODEL_NAME --log_dir $LOG_DIR --load_weights_dir $WEIGHTS_DIR --gpu_devices 1
Please cite our paper if you find our work useful in your research.
@inproceedings{ai2024elite360d,
title={Elite360D: Towards Efficient 360 Depth Estimation via Semantic-and Distance-Aware Bi-Projection Fusion},
author={Ai, Hao and Wang, Lin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={9926--9935},
year={2024}
}
We thank the authors of the projects below:
Unifuse, Panoformer, SpherePHD, SpherePHD(pytorch), HexRUNet,
SphereNet,
If you find these works useful, please consider citing:
@article{jiang2021unifuse,
title={UniFuse: Unidirectional Fusion for 360$^{\circ}$ Panorama Depth Estimation},
author={Hualie Jiang and Zhe Sheng and Siyu Zhu and Zilong Dong and Rui Huang},
journal={IEEE Robotics and Automation Letters},
year={2021},
publisher={IEEE}
}
@inproceedings{shen2022panoformer,
title={PanoFormer: Panorama Transformer for Indoor 360$$\^{}$\{$$\backslash$circ$\}$ $$ Depth Estimation},
author={Shen, Zhijie and Lin, Chunyu and Liao, Kang and Nie, Lang and Zheng, Zishuo and Zhao, Yao},
booktitle={European Conference on Computer Vision},
pages={195--211},
year={2022},
organization={Springer}
}
@inproceedings{lee2019spherephd,
title={Spherephd: Applying cnns on a spherical polyhedron representation of 360deg images},
author={Lee, Yeonkun and Jeong, Jaeseok and Yun, Jongseob and Cho, Wonjune and Yoon, Kuk-Jin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={9181--9189},
year={2019}
}
@inproceedings{zhang2019orientation,
title={Orientation-aware semantic segmentation on icosahedron spheres},
author={Zhang, Chao and Liwicki, Stephan and Smith, William and Cipolla, Roberto},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={3533--3541},
year={2019}
}
@inproceedings{coors2018spherenet,
title={Spherenet: Learning spherical representations for detection and classification in omnidirectional images},
author={Coors, Benjamin and Condurache, Alexandru Paul and Geiger, Andreas},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={518--533},
year={2018}
}