resnest50 -> 75.58%
数据增强方法:
transforms.Resize((self.BASE_RESIZE_SIZE, self.BASE_RESIZE_SIZE), Image.BILINEAR),
transforms.RandomCrop(self.INPUT_SIZE),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=15),
transforms.ColorJitter(brightness=self.BRIGHTNESS, contrast=self.CONTRAST, hue=self.HUE, saturation=self.SATURATION),
transforms.ToTensor(),
self.imagenet_normalization_paramters
学习率:
0.1初始化,不进行warmup 90个epoch,0.3, 0.6, 0.9 * epoch 按ratio=0.1进行线性衰减
model | accuracy |
---|---|
resne50(baseline)256->224 | 76.47% |
resnet50(baseline)512->448 | 84.55% |
efnet-b0 256->224 | 77.93% |
efnet-b1 272->240 | 79.63% |
efnet-b2 292->260 | 81.22% |
efnet-b3 352->300 | 83.12% |
efnet-b4 416->380 | 84.45% |
efnet-b5 512->456 | 85.64% |
efnet-b6 600->528 | 87.05% |
efnet-b7 640->600 | 88.11% |
bash train.sh
其中,horovod可以指定几个node,对应的就是几块GPU
CUDA_VISIBLE_DEVICES=0 python test.py
model | test acc |
---|---|
efnetb2 260 | 41.975 |
resnet50 224 | 36.11 |
efnetb2+resnet50_224 ensemble1 | 43.105 |
efnetb3 300 | 42.395 |
resnet50 448 | 41.63 |
efnetb3+resnet50_448 ensemble2 | 47.05 |
ensemble1+ensemble2 | 47.395 |
- 20201016 update
model | test acc | trick |
---|---|---|
efnetb5 456 | 51.04 | cosine_lr+cutmix+40epoch+no_warmup+32bs+0.1lr |
r50 448 | 47.64 | cosine_lr+cutmix+40epoch+no_warmup+48bs+0.1lr |
- 20201018 update
model | test acc | trick |
---|---|---|
regnet12gf | 53.578 | cosine_lr+cutmix+40epoch+no_warmup+48bs+0.1lr |
regnet12gf + efnetb5 | 55.758 | same |