Skip to content

haoweiz23/cub_baseline

 
 

Repository files navigation

CUB_200_2011 FGCV baseline

pretrain model

resnest50 -> 75.58%

数据增强方法:

transforms.Resize((self.BASE_RESIZE_SIZE, self.BASE_RESIZE_SIZE), Image.BILINEAR),
                transforms.RandomCrop(self.INPUT_SIZE),
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(degrees=15),
                transforms.ColorJitter(brightness=self.BRIGHTNESS, contrast=self.CONTRAST, hue=self.HUE, saturation=self.SATURATION),
                transforms.ToTensor(),
                self.imagenet_normalization_paramters

学习率:

0.1初始化,不进行warmup 90个epoch,0.3, 0.6, 0.9 * epoch 按ratio=0.1进行线性衰减

performance

model accuracy
resne50(baseline)256->224 76.47%
resnet50(baseline)512->448 84.55%
efnet-b0 256->224 77.93%
efnet-b1 272->240 79.63%
efnet-b2 292->260 81.22%
efnet-b3 352->300 83.12%
efnet-b4 416->380 84.45%
efnet-b5 512->456 85.64%
efnet-b6 600->528 87.05%
efnet-b7 640->600 88.11%

training

bash train.sh 其中,horovod可以指定几个node,对应的就是几块GPU

test

CUDA_VISIBLE_DEVICES=0 python test.py

pretrain download link

cub_resnet50_08456

accvbaseline

model test acc
efnetb2 260 41.975
resnet50 224 36.11
efnetb2+resnet50_224 ensemble1 43.105
efnetb3 300 42.395
resnet50 448 41.63
efnetb3+resnet50_448 ensemble2 47.05
ensemble1+ensemble2 47.395
  • 20201016 update
model test acc trick
efnetb5 456 51.04 cosine_lr+cutmix+40epoch+no_warmup+32bs+0.1lr
r50 448 47.64 cosine_lr+cutmix+40epoch+no_warmup+48bs+0.1lr
  • 20201018 update
model test acc trick
regnet12gf 53.578 cosine_lr+cutmix+40epoch+no_warmup+48bs+0.1lr
regnet12gf + efnetb5 55.758 same

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 71.0%
  • Jupyter Notebook 28.2%
  • Shell 0.8%