An open-source framework for aligning the same real-world entities in different knowledge graphs.
- KBA.ipynb
- data/
- Python (>=2.7)
- Numpy (>=1.13.3)
- TensorFlow (>=1.4.1)
- CUDA (>=9.0)
- Matplotlib (>=2.0.0)
- scikit-learn (>=0.18)
To obtain the best entity alignment performance, our model requires a predicate alignment pre-processing step as follows:
-
Install python-Levenshtein
pip install python-Levenshtein
-
Compute the similarity of all possible predicate pairs between two KGs. To compute the similarity, you can use the following command:
import difflib ... pred_similarity=difflib.SequenceMatcher("predicate_1", "predicate_2").ratio() ...
-
Filter the predicate similarity (pred_similarity) using a certain threshold. We use the threshold of 0.95.
-
Manually check the final result.
Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang. [Entity Alignment between Knowledge Graphs Using Attribute Embeddings.] AAAI 2019.