Skip to content

A pytorch implementation of Paper "Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution"

License

Notifications You must be signed in to change notification settings

hhb072/WaveletSRNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WaveletSRNet

A pytorch implementation of Paper "Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution"

Prerequisites

  • Python 2.7
  • PyTorch

Run

Use the default hyparameters except changing the parameter "upscale" according to the expected upscaling factor(2, 3, 4 for 4, 8, 16 upcaling factors, respectively).

CUDA_VISIBLE_DEVICES=1 python main.py --ngpu=1 --test --start_epoch=0 --test_iter=1000 --batchSize=64 --test_batchSize=32 --nrow=4 --upscale=3 --input_height=128 --output_height=128 --crop_height=128 --lr=2e-4 --nEpochs=500 --cuda

Results

Citation

If you use our codes, please cite the following paper:

@inproceedings{huang2017wavelet,
  title={Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution},
  author={Huang, Huaibo and He, Ran and Sun, Zhenan and Tan, Tieniu},
  booktitle={IEEE International Conference on Computer Vision},
  pages={1689--1697},    
  year={2017}
}

The released codes are only allowed for non-commercial use.

About

A pytorch implementation of Paper "Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published