Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Histogram enhancements #2812

Merged
merged 4 commits into from
Jun 22, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions holoviews/core/element.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ class Element(ViewableElement, Composable, Overlayable):
group = param.String(default='Element', constant=True)

def hist(self, dimension=None, num_bins=20, bin_range=None,
adjoin=True, individually=True, **kwargs):
adjoin=True, **kwargs):
"""
The hist method generates a histogram to be adjoined to the
Element in an AdjointLayout. By default the histogram is
Expand All @@ -37,7 +37,7 @@ def hist(self, dimension=None, num_bins=20, bin_range=None,
hists = []
for d in dimension[::-1]:
hist = histogram(self, num_bins=num_bins, bin_range=bin_range,
individually=individually, dimension=d, **kwargs)
dimension=d, **kwargs)
hists.append(hist)
if adjoin:
layout = self
Expand Down
5 changes: 2 additions & 3 deletions holoviews/core/spaces.py
Original file line number Diff line number Diff line change
Expand Up @@ -421,8 +421,7 @@ def hist(self, num_bins=20, bin_range=None, adjoin=True, individually=True, **kw
if issubclass(self.type, (NdOverlay, Overlay)) and 'index' not in kwargs:
kwargs['index'] = 0
for k, v in self.data.items():
hists = v.hist(adjoin=False, bin_range=bin_range,
individually=individually, num_bins=num_bins,
hists = v.hist(adjoin=False, bin_range=bin_range, num_bins=num_bins,
style_prefix=style_prefix, **kwargs)
if isinstance(hists, Layout):
for i, hist in enumerate(hists):
Expand Down Expand Up @@ -1421,7 +1420,7 @@ def overlay(self, dimensions=None, **kwargs):
return self.groupby(dims, group_type=NdOverlay)


def hist(self, num_bins=20, bin_range=None, adjoin=True, individually=True, **kwargs):
def hist(self, num_bins=20, bin_range=None, adjoin=True, **kwargs):
"""
Computes a histogram from the object and adjoins it by
default. By default the histogram is computed for the bottom
Expand Down
25 changes: 19 additions & 6 deletions holoviews/operation/element.py
Original file line number Diff line number Diff line change
Expand Up @@ -486,6 +486,12 @@ class histogram(Operation):
bin_range = param.NumericTuple(default=None, length=2, doc="""
Specifies the range within which to compute the bins.""")

bins = param.ClassSelector(default=None, class_=(np.ndarray, list, tuple), doc="""
An explicit set of bin edges.""")

cumulative = param.Boolean(default=False, doc="""
Whether to compute the cumulative histogram""")

dimension = param.String(default=None, doc="""
Along which dimension of the Element to compute the histogram.""")

Expand All @@ -495,9 +501,6 @@ class histogram(Operation):
groupby = param.ClassSelector(default=None, class_=(basestring, Dimension), doc="""
Defines a dimension to group the Histogram returning an NdOverlay of Histograms.""")

individually = param.Boolean(default=True, doc="""
Specifies whether the histogram will be rescaled for each Element in a UniformNdMapping.""")

log = param.Boolean(default=False, doc="""
Whether to use base 10 logarithmic samples for the bin edges.""")

Expand Down Expand Up @@ -555,15 +558,21 @@ def _process(self, view, key=None):
hist_range = (0, 1)

datetimes = False
bins = None if self.p.bins is None else np.asarray(self.p.bins)
steps = self.p.num_bins + 1
start, end = hist_range
if data.dtype.kind == 'M' or (data.dtype.kind == 'O' and isinstance(data[0], datetime_types)):
start, end = dt_to_int(start, 'ns'), dt_to_int(end, 'ns')
datetimes = True
data = data.astype('datetime64[ns]').astype('int64') * 1000.
hist_range = start, end
if bins is not None:
bins = bins.astype('datetime64[ns]').astype('int64') * 1000.
else:
hist_range = start, end

if self.p.log:
if self.p.bins:
edges = bins
elif self.p.log:
bin_min = max([abs(start), data[data>0].min()])
edges = np.logspace(np.log10(bin_min), np.log10(end), steps)
else:
Expand Down Expand Up @@ -601,7 +610,11 @@ def _process(self, view, key=None):
if view.group != view.__class__.__name__:
params['group'] = view.group

return Histogram((hist, edges), kdims=[view.get_dimension(selected_dim)],
if self.p.cumulative:
hist = np.cumsum(hist)
if self.p.normed in (True, 'integral'):
hist *= edges[1]-edges[0]
return Histogram((edges, hist), kdims=[view.get_dimension(selected_dim)],
label=view.label, **params)


Expand Down
29 changes: 29 additions & 0 deletions tests/operation/testoperation.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,35 @@ def test_points_histogram_bin_range(self):
hist = Histogram(([0.25, 0.25, 0.5], [0., 1., 2., 3.]))
self.assertEqual(op_hist, hist)

def test_points_histogram_explicit_bins(self):
points = Points([float(i) for i in range(10)])
op_hist = histogram(points, bins=[0, 1, 3], normed=False)

# Make sure that the name and label are as desired
op_freq_dim = op_hist.get_dimension('x_frequency')
self.assertEqual(op_freq_dim.label, 'x Frequency')

# Because the operation labels are now different from the
# default Element label, change back before comparing.
op_hist = op_hist.redim(x_frequency='Frequency')
hist = Histogram(([0, 1, 3], [1, 3]))
self.assertEqual(op_hist, hist)

def test_points_histogram_cumulative(self):
arr = np.arange(4)
points = Points(arr)
op_hist = histogram(points, cumulative=True, num_bins=3, normed=False)

# Make sure that the name and label are as desired
op_freq_dim = op_hist.get_dimension('x_frequency')
self.assertEqual(op_freq_dim.label, 'x Frequency')

# Because the operation labels are now different from the
# default Element label, change back before comparing.
op_hist = op_hist.redim(x_frequency='Frequency')
hist = Histogram(([0, 1, 2, 3], [1, 2, 4]))
self.assertEqual(op_hist, hist)

def test_points_histogram_not_normed(self):
points = Points([float(i) for i in range(10)])
op_hist = histogram(points, num_bins=3, normed=False)
Expand Down